
FUNDAMENTAL PROGRAMMING TECHNIQUES

ASSIGNMENT 1 – SUPPORT PRESENTATION (PART 1)

Outline

• Software development process

• Java Collections Framework

• Polynomial Theory

• Additional resources – polynomial arithmetic

Software Development Process

Requirements

Design

Unit Coding /

Testing

Integration /

Testing

System valid./

Testing

Software Construction

Needs System

Problem and solution

PROBLEM: “Performing polynomial operations
on paper is difficult and time consuming.”

SOLUTION: Polynomial calculator

1. Clearly state the main objective and the sub-objectives required to reach it.

2. Analyze the problem and define the functional and non-functional requirements.

3. Design the solution

4. Implement the solution

5. Test the solution

How to design and
implement the solution?

Objectives

• Main objective
• Design and implement a polynomial calculator with a dedicated graphical interface through which the

user can insert polynomials, select the mathematical operation to be performed and view the result.

• Sub-objectives
• Analyze the problem and identify requirements

• Design the polynomial calculator

• Implement the polynomial calculator

• Test the polynomial calculator

Analysis
Use Case: add polynomials
Primary Actor: user
Main Success Scenario:
1. The user inserts the 2 polynomials in the graphical user

interface.
2. The user selects the “addition” operation
3. The user clicks on the “compute” button
4. The polynomial calculator performs the addition of the

two polynomials and displays the result
Alternative Sequence: Incorrect polynomials
- The user inserts incorrect polynomials (e.g. with 2 or more
variables)

- The scenario returns to step 1

Functional requirements:
- The polynomial calculator should allow users to insert polynomials
- The polynomial calculator should allow users to select the
mathematical operation

- The polynomial calculator should add two polynomials
- … what other functional requirements can you define? …

Define requirements

Non-Functional requirements:
- The polynomial calculator should be intuitive and easy to
use by the user

- … what other non-functional requirements can you
define? …

Design
Level 1: Overall system design

Design
Level 2: Division into sub-systems/packages

Design
Level 3: Division into classes

When defining the classes think about ABSTRACTION, INHERITANCE, and ENCAPSULATION

Design
Level 4: Division into routines

Design
Level 5: Internal routine design

• Implementation…

Java Collections Framework

Java Collections Framework

• Unified architecture for representing and manipulating collections
• Collection = object that contains other objects (i.e., collection elements)

• Collection elements can be added / removed / manipulated in the collection

• Benefits
• Reduces programming effort; increases program speed and quality; allows interoperability among

unrelated APIs; fosters software reuse

Collection type Description Interface

Bag Most general form of collections; it is unordered and
allows duplicate elements

Collection

Set Does not contain duplicate elements; can be sorted Set

List Ordered collection of indexed elements; allows duplicate
elements

List

Map Unordered collection of associations (key, value) – the
key must be unique, the value can be any entity; can be
sorted

Map

Collection types

Backing data structure Targeted collection

Array ArrayList, many Queue / Deque and Hashtables
implementations

Linked List LinkedList, LinkedBlockingQueue, ConcurrentLinkedQueue
HashSet and LinkedHashSet

Hash Table HashSet, LinkedHashSet, HashMap, LinkedHashMap,
WeakHashMap, IdentityHashMap, ConcurrentHashMap

Tree TreeSet, TreeMap, PriorityQueue, PriorityBlockingQueue

Implementation Data Structure Support

Hash table as backing data structure

• Hash Table
• Backing data structure for HashSet, LinkedHashSet, HashMap, HashTable, LinkedHashMap, etc.

• Used to implement an associative array (by mapping keys to values) with constant access time to its
elements

• Constant access time => no repetitive structures => direct memory access

• The keys will be used as indexes in an array: store the pair (key, value) as

bucket[key]=value

• The elements of the array are called buckets

• The problem with this approach is the large memory allocated and unused if the key set is sparse
=> Solution: define a hash function to reduce the key set to a smaller set of size N

hash : Keys -> {1..N}
• The pair (key, value) will be stored as:

bucket[hash(key)] = value

• The hash function can lead to collisions when hash(key1) = hash(key2)
Chaining: store a list in a bucket. Add all
elements with the same hash value in
the corresponding list

Open Addressing : probe the next free
space from the array in a given sequenceSolved with

Java Map Interface

• Java Map Interface
• Map
• Object that maps keys to values

• A (key, value) pair is an entry in the Map

• No duplicate keys are allowed

• One key maps to at most one value

• Collection of Entries
• An Entry is specified by the interface Map.Entry

• Map.Entry - inner interface of the interface Map

• Main Map implementations
• Unsorted: HashMap, LinkedHashMap (inherits from HashMap)

• Sorted: TreeMap – ordered by key

• Iteration
• Has no iterator method

• keySet(), entrySet() methods return Set; values() method returns Collection -> Set and Collection can be iterated

public interface Map<K,V> {

// Basic operations

V put(K key, V value);

V get(Object key);

V remove(Object key);

boolean containsKey(Object key);

boolean containsValue(Object value);

int size();

boolean isEmpty();

// Bulk operations

void putAll(Map<? extends K, ? extends V> m);

void clear();

// provides Collection Views

public Set<K> keySet();

public Collection<V> values();

public Set<Map.Entry<K,V>> entrySet();

// Interface for entrySet elements

public interface Entry {

K getKey();

V getValue();

V setValue(V value);

}

}

Java HashMap

• Works on the principle of hashing
• Hashing = assigning a unique code for any variable/object after applying any formula/algorithm on its properties

• The Hash function should return the same hash code each and every time when the function is applied on same
or equal objects => two equal objects must produce the same hash code

• Stores instances of the Entry class in an array:

static class Entry<K ,V> implements Map.Entry<K, V> {

final K key;

V value;

Entry<K ,V> next;

final int hash;

...//More code goes here

}

transient Entry[] table;

Java HashMap

• Handling collisions
• Each bucket in Java contains a LinkedList.

• The Java implementation of Hashtable solves
collisions by chaining.

• After Java 1.8, the linked list was replaced by a
binary search tree, so the worst case complexity
was reduced from O(n) to O(log(n)).

Key K Integer long

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

Buckets Linked Lists

Index in
bucket
array

@Override
hashCode()

hash()

@Override
equals()

• Iteration examples

Java Map Interface

Map<String, String> teacherToCoursesMap = new HashMap<String, String>();
teacherToCoursesMap.put("John Doe", "Distributed Systems");

teacherToCoursesMap.put("Mary Jones", "Mathematics");

teacherToCoursesMap.put("Ann Smith", "Physics");

for(Map.Entry<String, String> entry: teacherToCoursesMap.entrySet()){

System.out.println("Teacher=" + entry.getKey() + "; " +

"Course=" + entry.getValue());

}

Iterate over Map.entrySet() using the for-each loop

for(String teacher: teacherToCoursesMap.keySet()){

System.out.println("Teacher=" + teacher);

}

for(String course: teacherToCoursesMap.values()){

System.out.println("Course=" + course);

}

Iterate over keys or values using the for-each loop

Iterator<Map.Entry<String, String>> iterator = teacherToCoursesMap.entrySet().iterator();

while(iterator.hasNext()){

Map.Entry<String, String> entry = iterator.next();

System.out.println("Teacher=" + entry.getKey() + " , Course=" + entry.getValue());

}

Iterate over Map.Entry<K, V> using iterators

Map Data structures comparison

Property HashMap HashTable LinkedHashMap TreeMap

Synchronization or Thread Safe No Yes No No

Null keys and null values One null key and any number of
null values

No One null key and any
number of null values

Only values

Iterating the values Iterator Enumerator Iterator Iterator

Iterator type Fail fast iterator Fail safe iterator Fail fast iterator Fail fast iterator

Interfaces Map Dictionary Map Map, NavigableMap, SortedMap

Internal implementation Hashtable with buckets Hashtable with buckets Hashtable with double-
linked buckets

Red-Black Tree

Get/Put average Complexity O(1) O(1) O(1) O(log(n))

Get/Put worst complexity O(n) O(n) O(n) O(log(n))

Space Complexity O(n) O(n) O(n) O(n)

Order No guarantee that order will
remain constant over time

No guarantee that order will
remain constant over time

Insertion-order Sorted according to natural
ordering of the keys

Polynomial Theory

Basics of polynomial arithmetic

A polynomial P in an indeterminate X is formally defined as:

𝑃 𝑋 = 𝑎𝑛 ∗ 𝑋
𝑛 + 𝑎𝑛−1 ∗ 𝑋

𝑛−1 +⋯+ 𝑎1 ∗ 𝑋 + 𝑎0

where:

c1, c2, …, cn represent the polynomial’s coefficients

n represents the polynomial degree

A monomial is a special type of polynomial with only one term.

Consider another polynomial Q in the indeterminate X which is formally defined as:

𝑄 𝑋 = 𝑏𝑛 ∗ 𝑋
𝑛 + 𝑏𝑛−1 ∗ 𝑋

𝑛−1 +⋯+ 𝑏1 ∗ 𝑋 + 𝑏0

Additional resources – polynomial arithmetic

Basics of polynomial arithmetic

Addition of two polynomials:

𝑃 𝑋 + 𝑄 𝑋 = (𝑎𝑛+𝑏𝑛) ∗ 𝑋
𝑛 + (𝑎𝑛−1+𝑏𝑛−1) ∗ 𝑋

𝑛−1 +⋯+ (𝑎1+𝑏1) ∗ 𝑋 + (𝑎0 + 𝑏0)

Example:

Consider the following two polynomials:

𝑃 𝑋 = 4 ∗ 𝑋5 − 3 ∗ 𝑋4 + 𝑋2 − 8 ∗ 𝑋 + 1

𝑄 𝑋 = 3 ∗ 𝑋4 − 𝑋3 + 𝑋2 + 2 ∗ 𝑋 − 1

The result of adding the two polynomials is:

𝑃 𝑋 + 𝑄 𝑋 = 4 ∗ 𝑋5 − 𝑋3 + 2 ∗ 𝑋2 − 6 ∗ 𝑋

Basics of polynomial arithmetic

Addition of two polynomials:

𝑃 𝑋 + 𝑄 𝑋 = (𝑎𝑛+𝑏𝑛) ∗ 𝑋
𝑛 + (𝑎𝑛−1+𝑏𝑛−1) ∗ 𝑋

𝑛−1 +⋯+ (𝑎1+𝑏1) ∗ 𝑋 + (𝑎0 + 𝑏0)

Example:

Consider the following two polynomials:

𝑃 𝑋 = 4 ∗ 𝑋5 − 3 ∗ 𝑋4 + 𝑋2 − 8 ∗ 𝑋 + 1

𝑄 𝑋 = 3 ∗ 𝑋4 − 𝑋3 + 𝑋2 + 2 ∗ 𝑋 − 1

The result of adding the two polynomials is:

𝑃 𝑋 + 𝑄 𝑋 = 4 ∗ 𝑋5 − 𝑋3 + 2 ∗ 𝑋2 − 6 ∗ 𝑋

Basics of polynomial arithmetic

Subtraction of two polynomials:

𝑃 𝑋 − 𝑄 𝑋 = (𝑎𝑛−𝑏𝑛) ∗ 𝑋
𝑛 + (𝑎𝑛−1−𝑏𝑛−1) ∗ 𝑋

𝑛−1 +⋯+ (𝑎1−𝑏1) ∗ 𝑋 + (𝑎0 − 𝑏0)

Example:

Consider the following two polynomials:

𝑃 𝑋 = 4 ∗ 𝑋5 − 3 ∗ 𝑋4 + 𝑋2 − 8 ∗ 𝑋 + 1

𝑄 𝑋 = 3 ∗ 𝑋4 − 𝑋3 + 𝑋2 + 2 ∗ 𝑋 − 1

The result of subtracting the polynomials is:

𝑃 𝑋 − 𝑄 𝑋 = 4 ∗ 𝑋5 − 6 ∗ 𝑋4 + 𝑋3 − 10 ∗ 𝑋 + 2

Basics of polynomial arithmetic

Multiplication of two polynomials

To multiply two polynomials, multiply each monomial in one polynomial by each monomial in the other
polynomial, add the results and simplify if necessary.

Example: Consider the following two polynomials:

𝑃 𝑋 = 3 ∗ 𝑋2 − 𝑋 + 1

𝑄 𝑋 = 𝑋 − 2

The result of multiplying the two polynomials is:

𝑃 𝑋 ∗ 𝑄 𝑋 = 3 ∗ 𝑋3 − 𝑋2 + 𝑋 − 6 ∗ 𝑋2 + 2 ∗ 𝑋 − 2 = 3 ∗ 𝑋3 − 7 ∗ 𝑋2 + 3 ∗ 𝑋 − 2

Basics of polynomial arithmetic

Division of two polynomials
To divide two polynomials P and Q, the following steps should be performed:
Step 1 - Order the monomials of the two polynomials P and Q in descending order according to their degree.
Step 2 - Divide the polynomial with the highest degree to the other polynomial having a lower degree (let’s consider
that P has the highest degree)
Step 3 – Divide the first monomial of P to the first monomial of Q and obtain the first term of the quotient
Step 4 – Multiply the quotient with Q and subtract the result of the multiplication from P obtaining the remainder of
the division
Step 5 – Repeat the procedure from step 2 considering the remainder as the new dividend of the division, until the
degree of the remainder is lower than Q.
Example: Consider the following two polynomials:
𝑃 𝑋 = 𝑋3 − 2 ∗ 𝑋2 + 6 ∗ 𝑋 − 5
𝑄 𝑋 = 𝑋2 − 1

The result of dividing the two polynomials is:
(X3 - 2*X2 + 6*X – 5) : (X2 – 1) = X – 2
-X3 + X

- 2*X2 + 7*X – 5
2*X2 – 2

7*X – 7 Quotient = X – 2; Remainder = 7*X-7

Basics of polynomial arithmetic

Derivative of a polynomial

The derivative of a polynomial P is defined as follows:

𝑑

𝑑𝑥
𝑎𝑛 ∗ 𝑋

𝑛 + 𝑎𝑛−1 ∗ 𝑋
𝑛−1 +⋯+ 𝑎1 ∗ 𝑋 + 𝑎0 = 𝑛 ∗ 𝑎𝑛 ∗ 𝑋

𝑛−1 + 𝑛 − 1 ∗ 𝑎𝑛−1 ∗ 𝑋
𝑛−2 +⋯+ 𝑎1

Example: Consider the following polynomial:

𝑃 𝑋 = 𝑋3 − 2 ∗ 𝑋2 + 6 ∗ 𝑋 − 5

The derivative of polynomial P is:

𝑑

𝑑𝑥
𝑋3 − 2 ∗ 𝑋2 + 6 ∗ 𝑋 − 5 = 3 ∗ 𝑋2 − 4 ∗ 𝑋 + 6

Basics of polynomial arithmetic

Integral of polynomials

The integral of a polynomial P is defined as follows:

𝑎𝑛׬ ∗ 𝑋
𝑛 + 𝑎𝑛−1 ∗ 𝑋

𝑛−1 +⋯+ 𝑎1 ∗ 𝑋 + 𝑎0 = 𝑎𝑛׬ ∗ 𝑋
𝑛𝑑𝑥 + 𝑎𝑛−1׬ ∗ 𝑋

𝑛−1𝑑𝑥 +⋯+ 𝑎1׬ ∗ 𝑋𝑑𝑥 + 𝑎0𝑑𝑥׬

where:

𝑎𝑛׬ ∗ 𝑋
𝑛𝑑𝑥 = 𝑎 ∗

𝑋𝑛+1

𝑛+1
+ 𝐶

Example: Consider the following polynomial:

𝑃 𝑋 = 𝑋3 + 4 ∗ 𝑋2 + 5

The integral of polynomial P is computed as:

𝑃׬ 𝑋 𝑑𝑥 = 𝑋3׬ + 4 ∗ 𝑋2 + 5 𝑋3𝑑𝑥׬= + 4׬ ∗ 𝑋2𝑑𝑥 + 5𝑑𝑥׬ =
𝑋3+1

3+1
+

4∗𝑋2+1

2+1
+

5∗𝑋0+1

0+1
+ 𝐶 =

𝑋4

4
+

4∗𝑋3

3
+ 5 ∗

𝑋 + 𝐶

	Slide 1: FUNDAMENTAL PROGRAMMING TECHNIQUES
	Slide 2: Outline
	Slide 3: Software Development Process
	Slide 4: Problem and solution
	Slide 5: Objectives
	Slide 6: Analysis
	Slide 7: Design Level 1: Overall system design
	Slide 8: Design Level 2: Division into sub-systems/packages
	Slide 9: Design Level 3: Division into classes
	Slide 10: Design Level 4: Division into routines
	Slide 11: Design Level 5: Internal routine design
	Slide 12: Java Collections Framework
	Slide 13: Java Collections Framework
	Slide 14: Hash table as backing data structure
	Slide 15: Java Map Interface
	Slide 16: Java HashMap
	Slide 17: Java HashMap
	Slide 18: Java Map Interface
	Slide 19: Map Data structures comparison
	Slide 20: Polynomial Theory
	Slide 21: Basics of polynomial arithmetic
	Slide 22: Additional resources – polynomial arithmetic
	Slide 23: Basics of polynomial arithmetic
	Slide 24: Basics of polynomial arithmetic
	Slide 25: Basics of polynomial arithmetic
	Slide 26: Basics of polynomial arithmetic
	Slide 27: Basics of polynomial arithmetic
	Slide 28: Basics of polynomial arithmetic
	Slide 29: Basics of polynomial arithmetic

