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Problem and solution

PROBLEM: “Performing polynomial operations 
on paper is difficult and time consuming.”

SOLUTION: Polynomial calculator

1. Clearly state the main objective and the sub-objectives required to reach it.

2. Analyze the problem and define the functional and non-functional requirements.

3. Design the solution

4. Implement the solution

5. Test the solution

How to design and 
implement the solution?



Objectives

• Main objective
• Design and implement a polynomial calculator with a dedicated graphical interface through which the 

user can insert polynomials, select the mathematical operation to be performed and view the result.

• Sub-objectives
• Analyze the problem and identify requirements

• Design the polynomial calculator

• Implement the polynomial calculator

• Test the polynomial calculator



Analysis
Use Case: add polynomials
Primary Actor: user
Main Success Scenario:
1. The user inserts the 2 polynomials in the graphical user 

interface.
2. The user selects the “addition” operation
3. The user clicks on the “compute” button
4. The polynomial calculator performs the addition of the 

two polynomials and displays the result
Alternative Sequence: Incorrect polynomials
- The user inserts incorrect polynomials (e.g. with 2 or more 
variables)

- The scenario returns to step 1

Functional requirements: 
- The polynomial calculator should allow users to insert polynomials
- The polynomial calculator should allow users to select the 
mathematical operation

- The polynomial calculator should add two polynomials
- … what other functional requirements can you define? …

Define requirements

Non-Functional requirements: 
- The polynomial calculator should be intuitive and easy to 
use by the user

- … what other non-functional requirements can you 
define? …



Design
Level 1: Overall system design



Design
Level 2: Division into sub-systems/packages



Design
Level 3: Division into classes

When defining the classes think about ABSTRACTION, INHERITANCE, and ENCAPSULATION



Design
Level 4: Division into routines



Design
Level 5: Internal routine design

• Implementation…



Java Collections Framework



Java Collections Framework

• Unified architecture for representing and manipulating collections
• Collection = object that contains other objects (i.e., collection elements)

• Collection elements can be added / removed / manipulated in the collection

• Benefits
• Reduces programming effort; increases program speed and quality; allows interoperability among  

unrelated APIs; fosters software reuse

Collection type Description Interface

Bag Most general form of collections; it is unordered and 
allows duplicate elements

Collection

Set Does not contain duplicate elements; can be sorted Set

List Ordered collection of indexed elements; allows duplicate 
elements

List

Map Unordered collection of associations (key, value) – the 
key must be unique, the value can be any entity; can be 
sorted

Map

Collection types

Backing data structure Targeted collection

Array ArrayList, many Queue / Deque and  Hashtables
implementations

Linked List LinkedList, LinkedBlockingQueue, ConcurrentLinkedQueue
HashSet and LinkedHashSet

Hash Table HashSet, LinkedHashSet, HashMap, LinkedHashMap, 
WeakHashMap, IdentityHashMap, ConcurrentHashMap

Tree TreeSet, TreeMap, PriorityQueue, PriorityBlockingQueue

Implementation Data Structure Support



Hash table as backing data structure

• Hash Table
• Backing data structure for HashSet, LinkedHashSet, HashMap, HashTable, LinkedHashMap, etc.

• Used to implement an associative array (by  mapping keys to values) with constant access time to its 
elements

• Constant access time => no repetitive structures => direct memory access 

• The keys will be used as indexes in an array: store the pair (key, value) as 

bucket[key]=value

• The elements of the array are called buckets

• The problem with this approach is the large memory allocated and unused if the key set is sparse
=> Solution: define a hash function to reduce the key set to a smaller set of size N

hash : Keys -> {1..N} 
• The pair (key, value) will be stored as: 

bucket[hash(key)] = value

• The hash function can lead to collisions when hash(key1) = hash(key2)
Chaining: store a list in a bucket. Add all 
elements with the same hash value in 
the corresponding list

Open Addressing : probe the next free 
space from the array in a given sequenceSolved with



Java Map Interface

• Java Map Interface
• Map
• Object that maps keys to values

• A (key, value) pair is an entry in the Map

• No duplicate keys are allowed

• One key maps to at most one value

• Collection of Entries
• An Entry is specified by the interface Map.Entry

• Map.Entry - inner interface of the interface Map

• Main Map implementations
• Unsorted: HashMap, LinkedHashMap (inherits from HashMap)

• Sorted: TreeMap – ordered by key

• Iteration
• Has no iterator method

• keySet(), entrySet() methods return Set; values() method returns Collection ->  Set and Collection can be iterated

public interface Map<K,V> {

// Basic operations

V put(K key, V value);

V get(Object key);

V remove(Object key);

boolean containsKey(Object key);

boolean containsValue(Object value);

int size();

boolean isEmpty();

// Bulk operations

void putAll(Map<? extends K, ? extends V> m);

void clear();

// provides Collection Views

public Set<K> keySet();

public Collection<V> values();

public Set<Map.Entry<K,V>> entrySet();

// Interface for entrySet elements

public interface Entry {

K getKey();

V getValue();

V setValue(V value);

}

}



Java HashMap

• Works on the principle of hashing
• Hashing = assigning a unique code for any variable/object after applying any formula/algorithm on its properties

• The Hash function should return the same hash code each and every time when the function is applied on same 
or equal objects => two equal objects must produce the same hash code

• Stores instances of the Entry class in an array:

static class Entry<K ,V> implements Map.Entry<K, V> {

final K key;

V value;

Entry<K ,V> next;

final int hash;

...//More code goes here

}

transient Entry[] table;



Java HashMap

• Handling collisions
• Each bucket in Java contains a LinkedList.

• The Java implementation of Hashtable solves 
collisions by chaining.

• After Java 1.8, the linked list was replaced by a 
binary search tree, so the worst case complexity 
was reduced from O(n) to O(log(n)).

Key K Integer long

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

<K,V> <K,V>

Buckets Linked Lists

Index in 
bucket 
array

@Override
hashCode()

hash()

@Override
equals()



• Iteration examples

Java Map Interface

Map<String, String> teacherToCoursesMap = new HashMap<String, String>(); 
teacherToCoursesMap.put("John Doe", "Distributed Systems");

teacherToCoursesMap.put("Mary Jones", "Mathematics");

teacherToCoursesMap.put("Ann Smith", "Physics");

for(Map.Entry<String, String> entry: teacherToCoursesMap.entrySet()){

System.out.println("Teacher=" + entry.getKey() + "; " +

"Course=" + entry.getValue());

}

Iterate over Map.entrySet() using the for-each loop

for(String teacher: teacherToCoursesMap.keySet()){

System.out.println("Teacher=" + teacher);

}

for(String course: teacherToCoursesMap.values()){

System.out.println("Course=" + course);

}

Iterate over keys or values using the for-each loop 

Iterator<Map.Entry<String, String>> iterator = teacherToCoursesMap.entrySet().iterator();

while(iterator.hasNext()){

Map.Entry<String, String> entry = iterator.next();

System.out.println("Teacher=" + entry.getKey() + " , Course=" + entry.getValue());

}

Iterate over Map.Entry<K, V> using iterators



Map Data structures comparison

Property HashMap HashTable LinkedHashMap TreeMap

Synchronization or Thread Safe No Yes No No

Null keys and null values One null key and any number of 
null values

No One null key and any 
number of null values

Only values

Iterating the values Iterator Enumerator Iterator Iterator

Iterator type Fail fast iterator Fail safe iterator Fail fast iterator Fail fast iterator

Interfaces Map Dictionary Map Map, NavigableMap, SortedMap

Internal implementation Hashtable with buckets Hashtable with buckets Hashtable with double-
linked buckets

Red-Black Tree

Get/Put average Complexity O(1) O(1) O(1) O(log(n))

Get/Put worst complexity O(n) O(n) O(n) O(log(n))

Space Complexity O(n) O(n) O(n) O(n)

Order No guarantee that order will 
remain constant over  time

No guarantee that order will 
remain constant over  time

Insertion-order Sorted according to natural 
ordering of the keys



Polynomial Theory



Basics of polynomial arithmetic

A polynomial P in an indeterminate X is formally defined as:

𝑃 𝑋 = 𝑎𝑛 ∗ 𝑋
𝑛 + 𝑎𝑛−1 ∗ 𝑋

𝑛−1 +⋯+ 𝑎1 ∗ 𝑋 + 𝑎0

where:

c1, c2, …, cn represent the polynomial’s coefficients

n represents the polynomial degree

A monomial is a special type of polynomial with only one term.

Consider another polynomial Q in the indeterminate X which is formally defined as:

𝑄 𝑋 = 𝑏𝑛 ∗ 𝑋
𝑛 + 𝑏𝑛−1 ∗ 𝑋

𝑛−1 +⋯+ 𝑏1 ∗ 𝑋 + 𝑏0



Additional resources – polynomial arithmetic



Basics of polynomial arithmetic

Addition of two polynomials:

𝑃 𝑋 + 𝑄 𝑋 = (𝑎𝑛+𝑏𝑛) ∗ 𝑋
𝑛 + (𝑎𝑛−1+𝑏𝑛−1) ∗ 𝑋

𝑛−1 +⋯+ (𝑎1+𝑏1) ∗ 𝑋 + (𝑎0 + 𝑏0)

Example:

Consider the following two polynomials:

𝑃 𝑋 = 4 ∗ 𝑋5 − 3 ∗ 𝑋4 + 𝑋2 − 8 ∗ 𝑋 + 1

𝑄 𝑋 = 3 ∗ 𝑋4 − 𝑋3 + 𝑋2 + 2 ∗ 𝑋 − 1

The result of adding the two polynomials is:

𝑃 𝑋 + 𝑄 𝑋 = 4 ∗ 𝑋5 − 𝑋3 + 2 ∗ 𝑋2 − 6 ∗ 𝑋
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Basics of polynomial arithmetic

Subtraction of two polynomials:

𝑃 𝑋 − 𝑄 𝑋 = (𝑎𝑛−𝑏𝑛) ∗ 𝑋
𝑛 + (𝑎𝑛−1−𝑏𝑛−1) ∗ 𝑋

𝑛−1 +⋯+ (𝑎1−𝑏1) ∗ 𝑋 + (𝑎0 − 𝑏0)

Example:

Consider the following two polynomials:

𝑃 𝑋 = 4 ∗ 𝑋5 − 3 ∗ 𝑋4 + 𝑋2 − 8 ∗ 𝑋 + 1

𝑄 𝑋 = 3 ∗ 𝑋4 − 𝑋3 + 𝑋2 + 2 ∗ 𝑋 − 1

The result of subtracting the polynomials is:

𝑃 𝑋 − 𝑄 𝑋 = 4 ∗ 𝑋5 − 6 ∗ 𝑋4 + 𝑋3 − 10 ∗ 𝑋 + 2



Basics of polynomial arithmetic

Multiplication of two polynomials

To multiply two polynomials, multiply each monomial in one polynomial by each monomial in the other 
polynomial, add the results and simplify if necessary.

Example: Consider the following two polynomials:

𝑃 𝑋 = 3 ∗ 𝑋2 − 𝑋 + 1

𝑄 𝑋 = 𝑋 − 2

The result of multiplying the two polynomials is:

𝑃 𝑋 ∗ 𝑄 𝑋 = 3 ∗ 𝑋3 − 𝑋2 + 𝑋 − 6 ∗ 𝑋2 + 2 ∗ 𝑋 − 2 = 3 ∗ 𝑋3 − 7 ∗ 𝑋2 + 3 ∗ 𝑋 − 2



Basics of polynomial arithmetic

Division of two polynomials
To divide two polynomials P and Q, the following steps should be performed:
Step 1 - Order the monomials of the two polynomials P and Q in descending order according to their degree. 
Step 2 - Divide the polynomial with the highest degree to the other polynomial having a lower degree (let’s consider 
that P has the highest degree)
Step 3 – Divide the first monomial of P to the first monomial of Q and obtain the first term of the quotient
Step 4 – Multiply the quotient with Q and subtract the result of the multiplication from P obtaining the remainder of 
the division
Step 5 – Repeat the procedure from step 2 considering the remainder as the new dividend of the division, until the 
degree of the remainder is lower than Q.
Example: Consider the following two polynomials:
𝑃 𝑋 = 𝑋3 − 2 ∗ 𝑋2 + 6 ∗ 𝑋 − 5
𝑄 𝑋 = 𝑋2 − 1

The result of dividing the two polynomials is:
(X3 - 2*X2 + 6*X – 5) : (X2 – 1) = X – 2
-X3 +    X

- 2*X2 + 7*X – 5
2*X2 – 2

7*X – 7 Quotient = X – 2; Remainder = 7*X-7



Basics of polynomial arithmetic

Derivative of a polynomial

The derivative of a polynomial P is defined as follows:

𝑑

𝑑𝑥
𝑎𝑛 ∗ 𝑋

𝑛 + 𝑎𝑛−1 ∗ 𝑋
𝑛−1 +⋯+ 𝑎1 ∗ 𝑋 + 𝑎0 = 𝑛 ∗ 𝑎𝑛 ∗ 𝑋

𝑛−1 + 𝑛 − 1 ∗ 𝑎𝑛−1 ∗ 𝑋
𝑛−2 +⋯+ 𝑎1

Example: Consider the following polynomial:

𝑃 𝑋 = 𝑋3 − 2 ∗ 𝑋2 + 6 ∗ 𝑋 − 5

The derivative of polynomial P is:

𝑑

𝑑𝑥
𝑋3 − 2 ∗ 𝑋2 + 6 ∗ 𝑋 − 5 = 3 ∗ 𝑋2 − 4 ∗ 𝑋 + 6



Basics of polynomial arithmetic

Integral of polynomials

The integral of a polynomial P is defined as follows:

𝑎𝑛׬ ∗ 𝑋
𝑛 + 𝑎𝑛−1 ∗ 𝑋

𝑛−1 +⋯+ 𝑎1 ∗ 𝑋 + 𝑎0 = 𝑎𝑛׬ ∗ 𝑋
𝑛𝑑𝑥 + 𝑎𝑛−1׬ ∗ 𝑋

𝑛−1𝑑𝑥 +⋯+ 𝑎1׬ ∗ 𝑋𝑑𝑥 + 𝑎0𝑑𝑥׬

where:

𝑎𝑛׬ ∗ 𝑋
𝑛𝑑𝑥 = 𝑎 ∗

𝑋𝑛+1

𝑛+1
+ 𝐶

Example: Consider the following polynomial:

𝑃 𝑋 = 𝑋3 + 4 ∗ 𝑋2 + 5

The integral of polynomial P is computed as:

𝑃׬ 𝑋 𝑑𝑥 = 𝑋3׬ + 4 ∗ 𝑋2 + 5 𝑋3𝑑𝑥׬= + 4׬ ∗ 𝑋2𝑑𝑥 + 5𝑑𝑥׬ =
𝑋3+1

3+1
+

4∗𝑋2+1

2+1
+

5∗𝑋0+1

0+1
+ 𝐶 =

𝑋4

4
+

4∗𝑋3

3
+ 5 ∗

𝑋 + 𝐶
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