FUNDAMENTAL PROGRAMMING TECHNIQUES

ASSIGNMENT 3 — SUPPORT PRESENTATION (PART 1)

Problem and solution

PROBLEM: “Managing the products, the clients
and the orders for a warehouse using hand-

written registries is difficult and time consuming ”
e

SOLUTION: order management application

= R RY

How to design and
implement the solution?

\

1. Clearly state the main objective and the sub-objectives required to reach it.

2. Analyze the problem and define the functional and non-functional requirements.
3. Design the solution

4. Implement the solution

5. Test the solution

Objectives

* Main objective
* Design and implement an application for managing the client orders for a warehouse

* Sub-objectives
* Analyze the problem and identify requirements
* Design the orders management application
* Implement the orders management application

* Test the orders management application

Analysis

Use Case: add product
Primary Actor: employee
Orders Management Application Maln SUCCESS ScenarIO: .
The employee selects the option to add a new product

The application will display a form in which the product details
Add product should be inserted

- The employee inserts the name of the product, its price and
current stock
- The employee clicks on the “Add” button

Employee Add client The application stores the product data in the database and
displays an acknowledge message

c dentif Alternative Sequence: Invalid values for the product’s data
- AN YOUIGEITTY [15€ cases The user inserts a negative value for the stock of the product
connected with “extend”,

“include” and “generalize” The appllca_tlon displays an error message and requests the user to
relationships? insert a valid stock
The scenario returns to step 3

What Other Use Cases Cam you,....... | = oo
identify?

Define rements

Functional requirements: Non-Functional requirements:

The application should allow an employee to add a new client The application should be intuitive and easy to use by the
The application should allow an employee to add a new product user
... what other functional requirements can you define? what other non-functional requirements can you

define? ...

Design — Conceptual Architecture

Presentation Presentation Layer - contains the classes
Layer defining the user interface

el Business Logic Business Layer — contains the classes that
\ encapsulate the application logic
Model — contains classes ,
Data Access Layer — contains the classes

mapped to the database .. :
table containing the queries and the database
connection

MySQL
Database

Design — Detailed Architecture

]

Presentation

View Controller

]

Business logic

Check this example of a layered
architecture implementation!!!

ClientBLL FProductBLL

Y

Model

Y

Client

Product

—

Data Access

ClientDAQ ProductDAO

h 4

]

Connection

ConnectionFactory|

https://gitlab.com/utcn_dsrl/pt-layered-architecture

JDBC Basics - Prerequisites

Install MySQL and MySQL Workbench (see document)

Create a database in MySQL Workbench — set “schooldb” as the name of the schema

ﬁ" Local instance MySQL56 x
Mame: |5d'1°°|db| | The name of the schema,

=9

File Edit View Query Database Server Tools Scripting
=T . —— W Rename References Riefactor model, changing ;
P8 e 88800 & —
Collation: |Server Default W Specifies which charset/co

VLT (] OOOSCaCODI, RO R R UL RO I
Create a new schema in the connected server F
MANAGEMENT . R e

Create a table called “student”

1 Tahle Mame: [student
i : ii",-
Collation: | Schema Default
¥ [schooldb

@ Tolaloo |
| Comments:

> @ | Create Table...

:E SEmeEiailme D Column Name Datatype PK NN UQ BIN UN ZF AI Default
Search Table Data... id INT OO 0Od
Z name VARCHAR(45) OO0 0ddgQdnQ™
Refresh All & address VARCHAR(45) OO0 0000
- & email VARCHAR(45) OO0 0000
< age INT DDDDDDD"
OO0 doo-™

https://dsrl.eu/courses/pt/materials/PT2023_Laboratory_Resources.pdf

JDBC Basics — Processing SQL Statements

* Steps
* Establish a connection with the data source
* Create a statement
* Execute the query
* Process the ResultSet object

* Close the connection

JDBC Basics — Establishing a Connection

* This class contains the name of the driver
(initialized through reflection), the database
location (DBURL), and the user and the password
for accessing the MySQL Server

* The connection to the DB will be placed in a _—

Singleton* object

* The class contains methods for creating a

connection, getting an active connection and
closing a connection, a Statement or a ResultSet

private static final Logger LOGGER
private static final String DRIVER

public class ConnectionFactory {

Logger.getloggeri{ConnectionFactory.class. getName());
"com.mysql.cj.jdbc.Driver™;

private static fimal String DBURL = “jdbc:mysql://localhost:3386/schooldb™;

private static final String USER
private static final String PASS

".r'l:”:lt ||-JI
"r'l:ll:lt IFJI

private static ConnectionFactory singleInstance = new ConnectionFactory();

private ConnectionFactory() {

try {

¥
¥

Class. forName (DRIVER) ;
T catch (ClassNotFoundExcepticon e) {
e.printStackTrace();

private Connection createConnection() {[]

public static
public static
public static

public static

Connection getConnection() {[]
void close({Connection connection) {[]
void close(Statement statement) {[]

void close(ResultSet resultSet) {[]

*Singleton Design Pattern: https://en.wikipedia.org/wiki/Singleton pattern

https://en.wikipedia.org/wiki/Singleton_pattern

JDBC Basics — Table Mapping

* In order to extract elements from the DB table, a special class (named entity) must be
created.

* This class MUST have the fields exactly the same type as the columns from the
corresponding table.

* The class must have also constructors, getters and setters.

public class Student { id name address email age
P":}“E'IE ;:t_ldi 1 Ton Baritiu ion@cs.utduj.re 22
private String name; _ _ _
private String nanc; ,, D) > oo Okt mrcGcsuiire 2
private S5tring email; - [HULL [HULL [HuLL | HuLL]

private int age;

JDBC Basics - Dependencies

* In order for the Java application to interact with the DB, a special .jar library must be added to the application

* It can be added either as awnal jar file dependency or as a maven dependency, in case of a Maven project

. docs File folder

. &IC File folder

% mysql-connector-java-5.1.41-binjar Executable Jar File <dependency’

|| CHANGES 242,633 80,747 File <groupldsmysql</groupld:

|| COPYING 18,122 6727 File -::artifact]d}m}'sql-cnnrjectnr-jaua-::.-’artifa-:t[d::
|| README 61,407 13437 File <version:g.8.23< version:

| README.txt 63,658 16,116 Text Document </dependency

€ buildxml 91,463 13,940 XML File

* The Java application uses this external library to communicate with the MySQL server

* It sends queries to the server using Statements and it receives the results of the queries as ResultSet

JDBC Basics — Creating and Executing Statement

1. Define a strinjwith the query

private final static Str‘ing.findﬁtatementftring = "SELECT * FROM student where id = ?";

public static Student findById(int studentId) {
student toReturn = null;

Connection dbConnection = ConnectionFactory.getConnection(); SZ. Create a Connection to the DB
PreparedStatement findStatement = null;

ResultSet rs = null;

L L3 L3 tl‘y {
3. Inltlallze the query————>findstatement = dbConnection.prepareStatement(findStatementString);

findStatement.setLlong(l, studentId);

rs = findStatement.executeQuery(); \q‘l'. Add the parameters to the
uery (the ? Will be replaced with

data from the application)

5. Execute the query

JDBC Basics - Process the ResultSet object

The results of the query execution are stored in a
result set:

5 = findStatement.E;écutEQuery{}j.

* Each element of the result set corresponds to a ,
s.next();

row from the table

| String name = rs.getString(“name");
String address = rs.getString(“address™);

* The properties/values from the columns can b% %t;ing ETail : E‘EEESWFE{ remall®)s
extracted if the column name is known int age = rs.getInt("age”);

* The result set can be iterated

JDBC Basics — Closing the connection

After each operation the connection must be closed:
> The result set

>ConnectionFactory.close(rs);
> The statement > ConnectionFactory.close(13

> The connection ConnectionFactory.close(dbConnecticon);

	Slide 1: FUNDAMENTAL PROGRAMMING TECHNIQUES
	Slide 2: Problem and solution
	Slide 3: Objectives
	Slide 4: Analysis
	Slide 5: Design – Conceptual Architecture
	Slide 6: Design – Detailed Architecture
	Slide 7: JDBC Basics - Prerequisites
	Slide 8: JDBC Basics – Processing SQL Statements
	Slide 9: JDBC Basics – Establishing a Connection
	Slide 10: JDBC Basics – Table Mapping
	Slide 11: JDBC Basics - Dependencies
	Slide 12: JDBC Basics – Creating and Executing Statement
	Slide 13: JDBC Basics - Process the ResultSet object
	Slide 14: JDBC Basics – Closing the connection

