

FUNDAMENTAL PROGRAMMING

TECHNIQUES

ASSIGNMENT 2

QUEUES MANAGEMENT APPLICATION USING

THREADS AND SYNCHRONIZATION MECHANISMS

1. Requirements
Design and implement a queues management application which assigns clients to queues such that

the waiting time is minimized.

Queues are commonly used to model real world domains. The main objective of a queue is to

provide a place for a "client" to wait before receiving a "service". The management of queue-based

systems is interested in minimizing the time amount their "clients" are waiting in queues before

they are served. One way to minimize the waiting time is to add more servers, i.e., more queues in

the system (each queue is considered as having an associated processor) but this approach increases

the costs of the service supplier.

The queues management application should simulate (by defining a simulation time 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) a

series of N clients arriving for service, entering Q queues, waiting, being served and finally leaving

the queues. All clients are generated when the simulation is started, and are characterized by three

parameters: ID (a number between 1 and N), 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 (simulation time when they are ready to enter

the queue) and 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (time interval or duration needed to serve the client; i.e. waiting time when

the client is in front of the queue). The application tracks the total time spent by every client in the

queues and computes the average waiting time. Each client is added to the queue with the minimum

waiting time when its 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 time is greater than or equal to the simulation time (𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≥

𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛).

The following data should be considered as input data for the application that should be inserted

by the user in the application’s user interface:

- Number of clients (N);

- Number of queues (Q);

- Simulation interval (𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑀𝐴𝑋);

- Minimum and maximum arrival time (𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑀𝐼𝑁 ≤ 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑀𝐴𝑋);

- Minimum and maximum service time (𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑀𝐼𝑁 ≤ 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ≤ 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑀𝐴𝑋);

1.1 Example
Consider the following input data for the application:

• N=4 clients

• Q = 2 queues

• 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑀𝐴𝑋 = 60, a 60 second simulation interval

• [2, 30] - the bounds for the client parameters, respectively a minimum and maximum

arrival time, meaning that clients will go to the queues from second 2 up to second 30.

• [2, 4] - the bounds for the service time, meaning that a client has a minimum time to wait

in front of the queue of 2 seconds and a maximum time of 4 seconds.

Using this input data, a set of 4 clients are generated random, each client i being defined by

the following tuple: (𝐼𝐷𝑖, 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑖 , 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑖), with the following constraints:

• 1 ≤ 𝐼𝐷𝑖 ≤ 𝑁

• 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑀𝐼𝑁 ≤ 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑖 ≤ 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑀𝐴𝑋

• 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑀𝐼𝑁 ≤ 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑖 ≤ 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑀𝐴𝑋

A number of Q threads will be launched to process in parallel the clients. Another thread will be

launched to hold the simulation time 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 and distribute each client i to the queue with the

smallest waiting time when 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑖 ≥ 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

The log of events contains the status of the pool of waiting clients and the queues as the simulation

time 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 goes from 0 to 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑀𝐴𝑋 . An example of data displayed in the log of events is

given in the table below:

Log of events Explanation

Time 0

Waiting clients: (1,2,2);

(2,3,3); (3,4,3); (4,10,2)

Queue 1: closed

Queue 2: closed

At time 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0, a number of 4 clients are generated. Client

with ID = 1 has an arrival time equal to 2, meaning that it will be

ready to go to a queue when 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ≥ 2. Furthermore, it has a

service time equal to 2, meaning that is needs to stay 2 timesteps in

the front of the queue.

The same rules apply for the next 3 clients.

The two queues are closed since there are no clients available.

Time 1

Waiting clients: (1,2,2);

(2,3,3); (3,4,3); (4,10,2)

Queue 1: closed

Queue 2: closed

At time 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1, none of the clients can be sent to the queues

because none of them has the arrival time greater or equal to 2.

The two queues are closed since there are not clients available.

Time 2

Waiting clients: (2,3,3);

(3,4,3); (4,10,2)

Queue 1: (1,2,2);

Queue 2: closed

Queue 1 opens and the client with ID =1 is sent to the first queue since

𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
1 ≥ 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 2.

Other clients are still waiting.

Queue 2 is closed.

Time 3

Waiting clients: (3,4,3);

(4,10,2)

Queue 1: (1,2,1);

Queue 2: (2,3,3);

Queue 2 opens at time 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 3, client with ID = 2 is sent to it

since 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
2 ≥ 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 3, and the waiting time at the second

queue (0) is smaller than the waiting time at the first queue (1), where

a client is still processed.

The client from queue 1 has its service time decreased to 1 (coloured

in yellow) because it is being processed.

Other clients are still waiting.

Time 4

Waiting clients: (4,10,2)

Queue 1: (3,4,3);

Queue 2: (2,3,2);

At time 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 4, client with ID = 3 is sent to the first queue

since 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
3 ≥ 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 4.

Furthermore, client with ID =1 was eliminated from the queue

because its service time has dropped to 0 (it was 1 at the previous

iteration and was decreased with one at the simulation step)

The client from queue 2 has its service time decreased to 2 (coloured

in yellow) because it is being processed.

The final client is still waiting.

…

Average waiting time:

2.5

The simulation is finished when there are no more clients in the

waiting queue or at the service queues or 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 > 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑀𝐴𝑋

The average waiting time is computed and appended to the log of

events.

2. Deliverables
• A documentation written in the template provided on the laboratory Web site

• Source files – will be uploaded on the personal gitlab account created according to the

instructions in the Laboratory Resources document, and following the steps:

o Create a private repository on gitlab named according to the following template

PT2024_Group_FirstName_LastName_Assignment_2

o Push the source code and the documentation (push the code not an archive with

the code)

o Share the repository with the user utcn_dsrl

3. Evaluation
The assignment will be graded as follows:

Requirement Grading

Minimum to pass

• Object-oriented programming design

• Random Client Generator

• Multithreading: one thread per queue

• Appropriate synchronized data structures to assure thread safety

• Log of events displayed in a .txt file (see the example in Section 1.1)

• Implement classes with maximum 300 lines (except the UI classes) and

methods with maximum 30 lines

• Use the Java naming conventions

• Good quality documentation addressing all sections from the documentation

structure.

5 p

Strategy pattern and the two strategies (shortest time, shortest queue) for allocating

clients to queues

1

Graphical user interface for: (1) simulation setup, and (2) displaying the real-time

queue evolution.

2 p

Display of simulation results (average waiting time, average service time, peak hour

for the simulation interval) in the graphical user interface/.txt file corresponding to

the log events

1 p

Run the application on the input data sets listed in the table below* and include the

generated logs of events in your documentation/repository.

1 p

*For the application testing use the input data sets from the table below:

Test 1 Test 2 Test 3

N = 4

Q = 2

𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑀𝐴𝑋 = 60 seconds

[𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑀𝐼𝑁 , 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑀𝐴𝑋] = [2, 30]

[𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑀𝐼𝑁 , 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑀𝐴𝑋]= [2, 4]

N = 50

Q = 5

𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑀𝐴𝑋 = 60 seconds

[𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑀𝐼𝑁 , 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑀𝐴𝑋] = [2, 40]

[𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑀𝐼𝑁 , 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑀𝐴𝑋]= [1, 7]

N = 1000

Q = 20

𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑀𝐴𝑋 = 200 seconds

[𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙
𝑀𝐼𝑁 , 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑀𝐴𝑋] = [10, 100]

[𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑀𝐼𝑁 , 𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑀𝐴𝑋]= [3, 9]

4. Bibliography
- http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

- http://www.tutorialspoint.com/java/util/timer_schedule_period.htm

- http://www.javacodegeeks.com/2013/01/java-thread-pool-example-using-executors-and-

threadpoolexecutor.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://www.tutorialspoint.com/java/util/timer_schedule_period.htm
http://www.javacodegeeks.com/2013/01/java-thread-pool-example-using-executors-and-threadpoolexecutor.html
http://www.javacodegeeks.com/2013/01/java-thread-pool-example-using-executors-and-threadpoolexecutor.html

