
FUNDAMENTAL PROGRAMMING TECHNIQUES

ASSIGNMENT 3 – SUPPORT PRESENTATION (PART I)

SOLUTION: order management application

Problem and solution

PROBLEM: “Managing the products, the clients
and the orders for a warehouse using hand-
written registries is difficult and time consuming ”

1. Clearly state the main objective and the sub-objectives required to reach it.

2. Analyze the problem and define the functional and non-functional requirements.

3. Design the solution

4. Implement the solution

5. Test the solution

How to design and
implement the solution?

Objectives

• Main objective
• Design and implement an application for managing the client orders for a warehouse

• Sub-objectives
• Analyze the problem and identify requirements

• Design the orders management application

• Implement the orders management application

• Test the orders management application

Analysis
Use Case: add product
Primary Actor: employee
Main Success Scenario:
1. The employee selects the option to add a new product
2. The application will display a form in which the product details

should be inserted
3. The employee inserts the name of the product, its price and

current stock
4. The employee clicks on the “Add” button
5. The application stores the product data in the database and

displays an acknowledge message

Alternative Sequence: Invalid values for the product’s data
- The user inserts a negative value for the stock of the product
- The application displays an error message and requests the user to

insert a valid stock
- The scenario returns to step 3

Functional requirements:
- The application should allow an employee to add a new client
- The application should allow an employee to add a new product
- … what other functional requirements can you define? …

Define requirements

Non-Functional requirements:
- The application should be intuitive and easy to use by the
user

- … what other non-functional requirements can you
define? …

Design – Conceptual Architecture

Presentation Layer - contains the classes
defining the user interface

Business Layer – contains the classes that
encapsulate the application logic

Data Access Layer – contains the classes
containing the queries and the database
connection

Presentation
Layer

Business Logic

Data Access

Model

MySQL
Database

Model – contains classes
mapped to the database
table

Design – Detailed Architecture

Check this example of a layered
architecture implementation!!!

https://gitlab.com/utcn_dsrl/pt-layered-architecture

JDBC Basics - Prerequisites

• Install MySQL and MySQL Workbench (see document)

• Create a database in MySQL Workbench – set “schooldb” as the name of the schema

• Create a table called “student”

https://dsrl.eu/courses/pt/materials/PT2023_Laboratory_Resources.pdf

JDBC Basics – Processing SQL Statements

• Steps
• Establish a connection with the data source

• Create a statement

• Execute the query

• Process the ResultSet object

• Close the connection

JDBC Basics – Establishing a Connection

• This class contains the name of the driver
(initialized through reflection), the database
location (DBURL), and the user and the password
for accessing the MySQL Server

• The connection to the DB will be placed in a
Singleton* object

• The class contains methods for creating a
connection, getting an active connection and
closing a connection, a Statement or a ResultSet

*Singleton Design Pattern: https://en.wikipedia.org/wiki/Singleton_pattern

https://en.wikipedia.org/wiki/Singleton_pattern

JDBC Basics – Table Mapping

• In order to extract elements from the DB table, a special class (named entity) must be
created.

• This class MUST have the fields exactly the same type as the columns from the
corresponding table.

• The class must have also constructors, getters and setters.

JDBC Basics - Dependencies

• In order for the Java application to interact with the DB, a special .jar library must be added to the application

• It can be added either as an external jar file dependency or as a maven dependency, in case of a Maven project

• The Java application uses this external library to communicate with the MySQL server

• It sends queries to the server using Statements and it receives the results of the queries as ResultSet

JDBC Basics – Creating and Executing Statement

1. Define a string with the query

2. Create a connection to the DB

3. Initialize the query

4. Add the parameters to the
query (the ? Will be replaced with
data from the application)

5. Execute the query

JDBC Basics - Process the ResultSet object

The results of the query execution are stored in a
result set:

• Each element of the result set corresponds to a
row from the table

• The result set can be iterated

• The properties/values from the columns can be
extracted if the column name is known

JDBC Basics – Closing the connection

After each operation the connection must be closed:
◦ The result set

◦ The statement

◦ The connection

	Slide 1: FUNDAMENTAL PROGRAMMING TECHNIQUES
	Slide 2: Problem and solution
	Slide 3: Objectives
	Slide 4: Analysis
	Slide 5: Design – Conceptual Architecture
	Slide 6: Design – Detailed Architecture
	Slide 7: JDBC Basics - Prerequisites
	Slide 8: JDBC Basics – Processing SQL Statements
	Slide 9: JDBC Basics – Establishing a Connection
	Slide 10: JDBC Basics – Table Mapping
	Slide 11: JDBC Basics - Dependencies
	Slide 12: JDBC Basics – Creating and Executing Statement
	Slide 13: JDBC Basics - Process the ResultSet object
	Slide 14: JDBC Basics – Closing the connection

