

1 | P a g e

FUNDAMENTAL PROGRAMMING

TECHNIQUES

Laboratory Resources

Tudor Cioara Ionut Anghel Marcel Antal

Claudia Daniela Pop Mitrea Dan Cristina Bianca Pop

i2023-2024

2 | P a g e

Contents

1 Java .. 3

1.1 Java JDK ... 3

1.2 Set the JAVA_HOME variable ... 5

2. IntelliJ IDEA ... 6

3. Database Server .. 9

4 Git and Maven Projects .. 12

4.1 Git installation ... 12

4.2 Create Account on GitLab ... 13

Inside the group, you can create your own projects for different applications of the PT lab. Click

on Create new project. .. 14

4.3 Basic Instructions .. 15

4.3.1 Create a project from scratch .. 15

4.3.2 Update the project ... 17

4.3.3. Create and work with a new branch .. 18

4.3.4. Getting git to work with a proxy server ... 20

4.3.5. Getting MAVEN to work with a proxy server .. 20

3 | P a g e

1 Java
1.1 Java JDK

1) Access the next link:

https://www.oracle.com/java/technologies/downloads/

2) Click on the link which corresponds to your version of the Operating System. In the

example the version which is used corresponds to Windows x64 and the file is named

https://download.oracle.com/java/21/latest/jdk-21_windows-x64_bin.exe.

3) Click on jdk-21_windows-x64_bin.exe. The window below will appear. Click on the Next

button.

4) You will be asked where you want to install Java. Use the default location and click Next.

https://www.oracle.com/java/technologies/downloads/
https://download.oracle.com/java/21/latest/jdk-21_windows-x64_bin.exe

4 | P a g e

5) After the installation is successfully completed the window below will be displayed. Click

Close.

5 | P a g e

1.2 Set the JAVA_HOME variable
Note: the steps may vary according to the Windows version installed on the computer

1) Write in the search bar: “Edit the system environment variables” and click on the suggested

option. The window below will be displayed.

2) Click on Environment Variables.

3) Under System Variables click New.

4) In the text field associated with the name of the variable insert JAVA_HOME and in the

field associated with the value of the variable insert C:\Program Files\Java\java_version;.

5) Click OK.

6 | P a g e

2. IntelliJ IDEA
We recommend using IntelliJ IDEA as the IDE for developing your applications during the

laboratories. As a student, you can benefit of a free educational license for IntelliJ IDEA, by

applying here https://www.jetbrains.com/community/education/#students -> Click on Apply now

-> Fill in the requested information and click on Apply for free products. After obtaining the

license, download the latest version of Intellij IDEA. Click on the downloaded file. You will be

asked whether you allow the program to make changes to this computer -> Click Yes.

Then, follow the steps below:

1) Click next

2) You will be asked where you want to install Intellij IDEA. Use the default location and

click Next.

https://www.jetbrains.com/community/education/#students

7 | P a g e

3) Configure the installation options (see an example in the image below) and click Next.

4) Click Install.

5) After the installation completes click on Finish.

6) Run IntelliJ IDEA. When you first run IntelliJ IDEA after the installation completes you

will have to activate it by inserting the username/email and password you used when

creating the account for obtaining the students license. Click Activate.

8 | P a g e

7) After the activation completes, the IDE will open.

9 | P a g e

3. Database Server
A database server must be installed on the local machine. A MySQL server can be used to run

locally the projects. For installing the MySQL server follow the next steps:

1) Click on the next link to download the latest version:

https://dev.mysql.com/downloads/windows/installer/.

2) Click on the second Download button.

3) Click on No thanks, just start my download.

4) Click on the downloaded file.

5) You will be asked whether you allow the program to make changes to this computer ->

Click Yes.

6) You will be asked to select the Setup Type that suits your use case. Select Custom and click

Next.

https://dev.mysql.com/downloads/windows/installer/

10 | P a g e

7) You will be redirected to “Select Products and Features”. Select “MySQL Server version”

and “MySQL Workbench version” and click Next.

8) Click Next.

9) Click Execute.

10) Click Next.

11) Click Next and follow the steps for the configuration of the MySQL Server. At this stage

pay attention to the port on which the MySQL server is running on (i.e., 3306 is the default

port).

- Click Next

- Select the Authentication Mode (select Use Strong Password Encryption for

Authentication) and click Next.

- Set the password for the root account – this must be set by you and make sure you

remember it as it will be used for further connections to the MySQL server. After inserting

the password click on the Check button.

11 | P a g e

- Click Next

- Click Next and then Execute

12) Click Finish.

Note: in case you uninstall MySQL, follow the steps presented here to completely uninstall it.

https://answers.microsoft.com/en-us/windows/forum/all/how-to-completely-uninstall-mysql/e90e1344-7b90-4319-8b2f-77b271ae66ed

12 | P a g e

4 Git and Maven Projects
Modern software projects development requires effort from large teams of developers that have to

collaborate in order to integrate their work and create the final product. Coordinating and tracking

the changes between multiple source files is a difficult task, thus an automatic tool was developed

in 2005, initially for the development of the Linux Kernel, and, since then, it has penetrated all

levels of software development. The tool is a version control system (VCS), named GIT, which

tracks changes of computer files and helps coordinating several people who work on those files.

Furthermore, large applications often encounter problems with the software build settings as well

as with the dependency description. To address these problems, another automatic tool was

created, MAVEN that defines conventions for the build procedure and uses an XML file to

describe the software project, dependencies, external modules, components and plug-ins.

4.1 Git installation
1) Click on https://git-scm.com/downloads.

2) Select your operating system.

3) If you select Windows, a file called Git-version-64-bit.exe should be downloaded. In the

case you select another operating system or if your system is on 32 bits then a file with a

similar name should be downloaded.

4) Click on this file and follow the default installation guidelines, except for the step where

you are asked which terminal emulator you want to use. Select the second option.

https://git-scm.com/downloads

13 | P a g e

4.2 Create Account on GitLab
1) Click on https://about.gitlab.com/.

2) In the right corner, click on Register. You will be asked to introduce your personal

information. Or, if you already have an account, just Sign In.

3) In the next window, you can choose the role of “Software Developer”. In the next

checkbox, you can choose the “Just me” option.

4) Following up, you will have to create a group. The name of the PRIVATE group must be

of the format: PT2024_GroupNumber_LastName_FirstName

(e.g. PT2024_30441_Popescu_Ioan)

5) For now, do not invite any other teammates to have access to the group, as we will do this

later.

https://about.gitlab.com/

14 | P a g e

6) Click Create group.

If you already had an account and just signed in, you must create the group we have just talked

about. Go to: Groups → Your Groups → New Group then create a new PRIVATE group with the

format: PT2024_GroupNumber_LastName_FirstName

(e.g. PT2024_30441_Popescu_Ioan)

7) Now you must give access to your group, to the lab assistants. On your Group page, go to:

Manage →Members → Invite Member → and offer Maintainer rights for the user:

utcn_dsrl .

Inside the group, you can create your own projects for different applications of the PT lab. Click

on Create new project.

Click on Create blank project. Remember to keep the same naming conventions for the projects.

mailto:utcn.dsrl@gmail.com

15 | P a g e

Click on Create project.

4.3 Basic Instructions

4.3.1 Create a project from scratch
1) Create the folder PT2024_GroupNumber_LastName_FirstName on D:\.

Inside this folder create a new project. Open IntelliJ, click on New Project.

Then choose Maven from the list from the left, choose the appropriate Java SDK, then click

on Create. Instead of using the default location suggested, use this one:

PT2024_GroupNumber_LastName_FirstName

Do not forget to also choose the appropriate name for your new Project, most likely using the

format we requested (unless it is a test project, not for one of your assignments).

16 | P a g e

2) Click Create.

3) Now, you must create a .gitignore file in the project if it is not already created, which tells

git which files to ignore when committing and pushing to your remote projects. You don’t

want unnecessary files, such as IDE configuration files, to be pushed, because they are

strictly relevant for your local system. Just create a file named “.gitignore” and write the

following lines:

4) Right click on the folder PT2024_GroupNumber_LastName_FirstName_Assignment_1

and click Git Bash Here.

5) Write the next commands:

17 | P a g e

a) git init

Note: the command will create a local repository with a default main branch. Notice that after

executing this command, a hidden .git folder will be created inside the current folder representing

the repository where git stores all necessary files. From now on, it will be possible to track all the

changes that will be performed to the files from the original folder. The original folder is

considered to be the working directory, while the .git folder is referred as the repository that tracks

the made changes (for more details check this link).

b) git remote add origin

https://gitlab.com/group_name/repository_name.git

For example:

git remote add origin

https://gitlab.com/pt2024_30441_popescu_ioan/pt2024_30441_popescu_ioan_assignment_1.git

Note: this command will connect the local repository created using the “git init” command with

the remote repository’s origin (for more details check this link).

c) git add .

Note: the command will mark any changes that you have made to your project files (e.g.

creating/modifying/deleting files) as staged so that they can be included in the next commit (for

more details check this link).

d) git commit –a –m “initial commit”

Note: the command commits any files you have added with the git add command and commits any

files you have changed since then – at this step the changes are saved only locally. An explanation

message is given in order to document what has been added/changed (for more details check this

link).

e) git branch -M main

f) git push –uf origin main

Note: the command sends the committed changes to your remote repository (for more details check

this link).

4.3.2 Update the project
1) Create a new class named App in the same package as the class Main.

2) Navigate to folder PT2023_GroupNumber_LastName_FirstName_Assignment_Number,

right click and select Git Bash Here

3) Insert the next commands:

a) git add .

b) git commit –a –m “add new class”

c) git pull origin main

https://www.javatpoint.com/git
https://gitlab.com/group_name/repository_name.git
https://gitlab.com/pt2024_30441_popescu_ioan/pt2024_30441_popescu_ioan_assignment_1.git
https://www.javatpoint.com/git
https://www.javatpoint.com/git
https://www.javatpoint.com/git
https://www.javatpoint.com/git

18 | P a g e

Note: the command fetches and merges changes on the remote server to your working directory

(for more details check this link).

d) git push –u origin main

4) You can always see the modification that were not committed yet by using:

a) git status

4.3.3. Create and work with a new branch
The real value of working with git, is the power of branches. They allow multiple developers to

work simultaneously on the same project, on different features, and then to merge all the new

changes in the main branch.

1) Create a branch production

The first step towards working with branches, is to create a new branch. When you create a new

branch, it will automatically be initialized with the currently existent code. Then, while inside that

branch, all changes will be added only on that branch.

To create a new branch:

• pull all the changes from the remote project, to be up to date:

◦ git pull

• create the branch on your local machine and switch directly to that branch:

◦ git checkout -b <branch-name>

• push the newly created branch to the remote repository:

◦ git push origin <branch_name>

An example to create the branch production is the following:

#git pull

#git checkout -b production

#git push origin production

2) switch between branches

When working with multiple branches, it is important to keep track of all the available branches,

and to always know on which branch you currently are.

• To bring locally meta-data information about existing branches:

◦ git fetch --all

• In order to see all existent branches:

https://www.javatpoint.com/git

19 | P a g e

◦ git branch -a

• In order to see on which branch you currently are:

◦ git status

• in order to switch from a branch to another, use the above-mentioned command:

◦ git checkout <branch-name>

▪ if the branch with that name is already existent, it will just switch to that one,

instead of creating a new one

You can try to create a new branch, make some small change, then switch back to the main branch,

and see that change is not present in the main branch.

3) commit changes to new branch

When making changes on a new branch, you must always commit and push them to the remote

branch, just like working on main.

• First, make sure you are on the right branch:

◦ git status

• Repeat the same process as if you were working with main. However, pay attention to the

names:

◦ git add .

◦ git commit -m “commit message”

◦ git push -u origin <branch-name>

• And now, your remote branch <branch-name> contains all the changes you have pushed.

4) merge branch with main

An important step when working with branches, is to always keep the main branch up to date with

the latest working and functional code from your other branches. Merging two branches, as the

name suggests, is the process of merging the code from two branches. If the branches contain

changes on different parts of the code, the merge process will work instantly. If both branches

contain changes on the same parts of code, git will require you to solve the conflicts: from the two

modifications, you must choose the one which you want to remain in the final version.

DO NOT FORGET: do not merge code which is not working properly, or which is not tested,

into main. The main branch must always contain the latest functional version of your project.

In order to merge two branches:

• git merge <branch-with-new-changes> <branch-to-be-updated>

20 | P a g e

For a more in-depth explanation of branches and how they can be manipulated to serve your needs,

we suggest checking the following tutorial:

 https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

4.3.4. Getting git to work with a proxy server
1) In the UTCN laboratories you need to set the proxy server to use GIT bash

2) Open Git Bash

3) Insert the following commands:

a) git config --global http.proxy http://proxy.utcluj.ro:3128

b) git config –global --get http.proxy

4) In order to unset the proxy, use the following command:

a) git config --global --unset http.proxy

4.3.5. Getting MAVEN to work with a proxy server
1) In the UTCN laboratories you need to set the proxy server in order to use MAVEN projects

2) Go to Windows Explorer-> Drive C-> Users -> Your User -> .m2

3) Create the folder conf

4) Go to conf folder and create the file settings.xml with the following content:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

 http://maven.apache.org/xsd/settings-1.0.0.xsd">

 <localRepository/>

 <interactiveMode/>

 <usePluginRegistry/>

 <offline/>

 <pluginGroups/>

 <servers/>

 <mirrors/>

 <proxies>

 <proxy>

 <id>myproxy</id>

 <active>true</active>

 <protocol>http</protocol>

 <host>proxy.utcluj.ro</host>

 <port>3128</port>

 <username></username>

 <password></password>

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
http://proxy.utcluj.ro:3128/

21 | P a g e

 <nonProxyHosts>localhost,127.0.0.1</nonProxyHosts>

 </proxy>

 </proxies>

 <profiles/>

 <activeProfiles/>

</settings>

5) Go back to folder .m2

6) Delete the folder repository

7) For Eclipse

a) Open Eclipse

b) Go to Window->|Preferences->|Maven->|User Settings

c) At the User Settings tab browse for the settings.xml file created at step 4

d) Click Apply and OK

e) Go on the project, right click and go to Maven->Update Project

8) For IntelliJ IDEA

a) Open IntelliJ IDEA

b) Go to File->|Settings->|Build, Execution, Deployment->|Build Tools->|Maven

c) In the User Settings file field browse for the settings.xml file created at step 4.

d) Click Apply and OK

