
FUNDAMENTAL PROGRAMMING TECHNIQUES
LAMBDA EXPRESSIONS AND STREAMS
M A I N B I B L I O G R A P H I C S O U R C E S :
• H T T P S : / / D O C S . O R A C L E . C O M / J A V A S E / T U T O R I A L / J A V A / J A V A O O / L A M B D A E X P R E S S I O N S . H T M L
• H T T P S : / / D O C S . O R A C L E . C O M / J A V A S E / 8 / D O C S / A P I / J A V A / U T I L / S T R E A M / C O L L E C T O R S . H T M L
• H T T P S : / / W W W . O R A C L E . C O M / T E C H N I C A L - R E S O U R C E S / A R T I C L E S / J A V A / M A 1 4 - J A V A - S E - 8 - S T R E A M S . H T M L
• H T T P S : / / J E N K O V . C O M / T U T O R I A L S / J A V A / L A M B D A - E X P R E S S I O N S . H T M L
• K . S H A R A N , B E G I N N I N G J A V A 8 L A N G U A G E F E A T U R E S : L A M B D A E X P R E S S I O N S , I N N E R C L A S S E S , T H R E A D S , I / O ,

C O L L E C T I O N S , A N D S T R E A M S 1 S T E D I T I O N , A P R E S S , 2 0 1 4 .

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://www.oracle.com/technical-resources/articles/java/ma14-java-se-8-streams.html
https://jenkov.com/tutorials/java/lambda-expressions.html

Lambda Expressions

• Anonymous block of code
• Describes an anonymous function that has no name, no return type, no throws clause and no

generics

• Syntax

• (<LambdaParametersList>) - a comma-separated list of formal parameters enclosed in parentheses

• -> - the arrow token

• { <LambdaBody> } - consists of a single expression or a statement block

• May declare local variables

• May use statements including break, continue and return

• May throw exceptions

• Classification: implicit typed and explicit typed lambda expressions

(<LambdaParametersList>) -> { <LambdaBody> }

Lambda Expressions and Functional Interfaces

• Lambda expressions have different types in different contexts => are poly expressions

• Lambda expression type is Functional Interface, the exact type depends on the context
in which it is used

T t = <LambdaExpression>; The target type of the λ ex is T

Inferring rules used by compiler (they are close related to the abstract method of the

Functional Interface)

• T must be a Functional Interface type

• λ ex has the same number and type of parameters as the abstract method of T

• For an implicit λ ex, parameters types are inferred from the abstract method of T

• The type of the returned value from the body of the λ ex should be assignment

compatible to the return type of the abstract method of T

• If the body of the λ ex throws any checked exceptions, they must be compatible

with the declared throws clause of the abstract method of T

• It is a compile-time error to throw checked exceptions from the body of a λ ex, if its

target type's method does not contain a throws clause

@FunctionalInterface
public interface Adder {
 double add(double n1, double n2);
}

Adder adder = (x, y) -> x + y;

double sum1 = adder.add(10.34, 89.11);

Lambda Expressions and Functional Interfaces

• Common functional interfaces defined in java.util.function

// Example using Function
Function<Long, Long> square = x -> x * x;
Function<Long, Long> addOne = x -> x + 1;

Function<Long, Long> squareAddOne =
square.andThen(addOne);

System.out.println(squareAddOne.apply(5L));

// Example using Predicate
Predicate<Integer> greaterThanTen = x -> x > 10;
Predicate<Integer> lessThanOrEqualToTen =

 greaterThanTen.negate();

System.out.println(greaterThanTen.test(10));
System.out.println(lessThanOrEqualToTen.test(10));

Lambda Expressions and Functional Interfaces

• Method references
• compact, easy-to-read lambda expressions for methods that already have a name

• Syntax

• <Qualifier> depends on the type of the method reference

• <MethodName> is the name of the method

<Qualifier>::<MethodName>

public interface MyPrinter{
 public void print(String s);
}

// Using lambda expressions
MyPrinter myPrinter = s ->

System.out.println(s);

// Using method references
MyPrinter myPrinter = System.out::println;

Lambda Expressions and Functional Interfaces

• Method references – Comparing Objects
• Methods of the Comparator interface

• Example - create a Comparator<Person> that sorts Person objects based on their last names and first names

static <T,U extends Comparable<? super U>> Comparator<T> comparing (Function<? super T,? extends U> keyExtractor)
default <U extends Comparable<? Super U>>Comparator<T> thenComparing (Function<? super T,? extends U> keyExtractor)

Comparator<Person> lastFirstComp = Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName);

Streams

• Definition
• a sequence of elements from a source that supports aggregate operations

• Sequence of elements: A stream provides an interface to a sequenced set of values of a specific element type;
streams do not actually store elements; they are computed on demand

• Source: Streams consume from a data-providing source such as collections, arrays, or I/O resources

• Aggregate operations: Streams support SQL-like operations and common operations from functional
programing languages (e.g., filter, map, reduce, find, match, sorted, etc.)

• Features

• Pipelining: Many stream operations return a stream themselves => allows operations to be chained
to form a larger pipeline

• Internal iteration: In contrast to collections, which are iterated explicitly (external iteration), stream
operations do the iteration behind the scenes for you

Streams

• Example - Find all transactions of type grocery and return a list of transaction IDs
sorted in decreasing order of transaction value

List<Integer> transactionsIds = transactions.stream() //or transactions.parallelStream()
 .filter(t -> t.getType() == Transaction.GROCERY)
 .sorted(comparing(Transaction::getValue).reversed())
 .map(Transaction::getId)
 .collect(toList());

Streams

• Example – Create a stream from files

public class Product {
 private String name;
 public Product(String name) { this.name = name; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
}

public class StreamProcessing {
 public static void main(String[] args) throws IOException {
 Stream<String> stream = Files.lines(Paths.get("products.txt"));
 List<Product> productList = stream.map(line -> new Product(line))
 .collect(Collectors.toList());
 productList.stream()
 .map(Product::getName)
 .forEach(System.out::println);
 }
}

apple
juice
bread
…

products.txt

// Convert elements to strings and concatenate them,separated
// by commas
String joined = things.stream().map(Object::toString)
 .collect(Collectors.joining(", "));

Streams

• Collectors Class (java.util.stream package) - implements various useful reduction
operations

Fragment of the Collectors class’ methods

// Accumulate names into a List
List<String> list = people.stream().map(Person::getName)
 .collect(Collectors.toList());

// Compute sum of salaries of employee
int total = employees.stream()

.collect(Collectors.summingInt(Employee::getSalary)));

// Group employees by department
Map<Department, List<Employee>> byDept = employees.stream()
 .collect(Collectors.groupingBy(Employee::getDepartment));

// Compute sum of salaries by department
Map<Department, Integer> totalByDept = employees.stream()

.collect(Collectors.groupingBy(Employee::getDepartment,
Collectors.summingInt(Employee::getSalary)));

	Slide 1: FUNDAMENTAL PROGRAMMING TECHNIQUES
	Slide 2: Lambda Expressions
	Slide 3: Lambda Expressions and Functional Interfaces
	Slide 4: Lambda Expressions and Functional Interfaces
	Slide 5: Lambda Expressions and Functional Interfaces
	Slide 6: Lambda Expressions and Functional Interfaces
	Slide 7: Streams
	Slide 8: Streams
	Slide 9: Streams
	Slide 10: Streams

