
FUNDAMENTAL PROGRAMMING TECHNIQUES

ASSIGNMENT 2 – SUPPORT PRESENTATION (PART I I)

Main bibliographic sources
• https://docs.oracle.com/javase/tutorial/essential/concurrency/
• Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug

Lea, Java Concurrency in Practice, Addison Wesley, Pearson Education
• K. Sharan, Beginning Java 8 Language Features: Lambda Expressions, Inner Classes,

Threads, I/O, Collections, and Streams 1st Edition, APRESS, 2014.

https://docs.oracle.com/javase/tutorial/essential/concurrency/

Agenda

• Java Memory Model

• Volatile Variables

• Synchronized Statements

• Synchronized Methods

• Atomicity

• Synchronized Collections

• Concurrent Collections

Java Memory Model

Atomicity Visibility Ordering

Volatile Variables

The Java volatile keyword guarantees visibility of changes to variables across threads.

For every read request for a
volatile variable, a thread reads

the value from the main memory.

For every write request for a
volatile variable, a thread writes
the value to the main memory.

• A thread does not cache the value of a volatile variable in its working
memory.

• Using a volatile variable is useful only in a multi-threaded environment for
variables that are shared among threads.

• It is faster and cheaper than using a synchronized block.

Volatile Variables

Not using volatile variables Using volatile variables

public class SharedObject {
 public int counter = 0;
}

Source
“Visibility” Problem!

public class SharedObject {
 public volatile int counter = 0;
}

If thread T1 modifies the counter, and
thread T2 reads the counter (but never

modifies it), declaring the counter variable
volatile is enough to guarantee visibility for

T2 of writes to the counter variable.

If both T1 and T2 were incrementing the
counter variable, then declaring the counter

variable volatile would not have been
enough

https://jenkov.com/tutorials/java-concurrency/volatile.html

Volatile Variables

• If two threads are both reading and writing to a shared variable, then using the
volatile keyword for that is not enough!
• Solutions

1) Use the synchronized keyword around critical sections to guarantee that the reading and the writing of
the volatile variable is atomic

2) Use atomic data types found in java.util.concurrent package (e.g., AtomicLong, AtomicReference)

• Performance considerations
• Reading and writing of volatile variables causes the variable to be read or written to main

memory

• Reading from and writing to main memory is more expensive than accessing the CPU cache

Source

Use volatile variables when you really need to enforce visibility of variables!

https://jenkov.com/tutorials/java-concurrency/volatile.html

Synchronized Statements

• To preserve state consistency, update state variables in a single atomic
operation!

• Every Java object can implicitly act as a lock for purposes of synchronization
➢intrinsic locks or monitor locks

➢Automatically acquired and released

➢A happens-before relationship is established

synchronized (lock) {//Reference to an object
 // Access or modify shared state guarded by lock
 …
}

Block of code to
be guarded by

the lock

Synchronized Statements

• Examples of synchronized blocks

synchronized(MyClass.class){
 // some code
 }
Or
synchronized(this){
 // some code
 }

public void transfer(Account a,
 Account b, double sum){
 synchronized(a){// Th1 locks acc. a
 //Th2 locks account b
 synchronized(b){
 //transfer sum
 }
 }
}
…
Call function :
Th1: transfer(a,b,sum1);
Th2: transfer(b,a,sum1);

Deadlock situation!!!

Locks can be used to create
synchronized code

Locks can lead to deadlocks

Synchronized Methods

• synchronized keyword in the methods’ declaration

• Constructors cannot be synchronized

Synchronized methods can have
problems with liveness.

Atomicity

• Atomic action cannot be interleaved => avoids thread interference

• java.util.concurrent.atomic package

Reads and writes are atomic for reference
variables and for most primitive variables
(all types except long and double).

Reads and writes are atomic for all
variables declared volatile (including long
and double variables).

Working with memory
doesn’t happen instantly

Source

https://www.baeldung.com/java-volatile-variables-thread-safety

Atomicity

Compound Operations

int i=0;
i++; // Get I value & add one to it
/*Accessed simultaneously by both Th1 and Th2
Can lead to inconsistencies:
- result can be 1(both threads got 0 and

incremented to 1)
- result can be 2(second thread got the value

1 incremented by the first thread)
*/

Atomic Operations

Volatile variables
• Changes are always visible to other threads
• Establishes a happens-before relationship with

subsequent reads of that same variable
• Sees also the side effects of the code that led up the

change

i++ is not atomic!
• read-modify-write operation
• not stateless and is not thread-safe

due to instance variable
Race conditions

AtomicInteger i= new AtomicInteger();
i.getAndIncrement ();

Synchronized Collections

• Synchronization wrappers which create synchronized views of
collections
◦ syncronizedCollection, synchronizedList, synchronizedMap, etc.

◦ Achieve thread-safety through intrinsic locks

◦ Synchronized collections are thread safe

List<String> list = Collections.synchronizedList(new ArrayList<String>());

Must manually
synchronize on

the returned
collection when
iterating over it

Collection c = Collections.synchronizedCollection(myCollection);
...
synchronized (c) {
 Iterator i = c.iterator(); // Must be in the
 // synchronized block
 while (i.hasNext()) foo(i.next());
}

Concurrent Collections

• Designed for concurrent accesses from multiple threads
• java.util.concurrent package: BlockingQueue, ConcurrentHashMap,

ConcurrentNavigableMap, CopyOnWriteArrayList

• Achieve thread-safety
• BlockingQueue – provides blocking put and take methods

• Support the producer-consumer design patterns

• ConcurrentHashMap - divides its data into segments

• Different threads can acquire locks on each segment

• Multiple threads can access the map at the same time

• CopyOnWriteArrayList - creates a separate copy of List for each write operation

Are much more performant than synchronized collections

	Slide 1: FUNDAMENTAL PROGRAMMING TECHNIQUES
	Slide 2: Agenda
	Slide 3: Java Memory Model
	Slide 4: Volatile Variables
	Slide 5: Volatile Variables
	Slide 6: Volatile Variables
	Slide 7: Synchronized Statements
	Slide 8: Synchronized Statements
	Slide 9: Synchronized Methods
	Slide 10: Atomicity
	Slide 11: Atomicity
	Slide 12: Synchronized Collections
	Slide 13: Concurrent Collections

