

FUNDAMENTAL PROGRAMMING TECHNIQUES

ASSIGNMENT 3

ORDERS MANAGEMENT

1. Requirements
Consider an application, Orders Management, for processing client orders for a warehouse.

Relational databases should be used to store the products, the clients, and the orders. The

application should be designed according to the layered architecture pattern and should use

(minimally) the following classes:

• Model classes - represent the data models of the application

• Business Logic classes - contain the application logic

• Presentation classes – GUI related classes

• Data access classes - classes that contain the access to the database

Note: Other classes and packages can be added to implement the full functionality of the

application.

2. Deliverables
• Source files, JavaDoc files, SQL dump file (containing the SQL statements for: creating

the database and the tables, and populating the tables with the corresponding data) – will

be uploaded on the personal Gitlab account created according to the instructions in the

Laboratory Resources document, and following the steps:

o Create a private repository on Gitlab named according to the following template:

PT2025_Group_FirstName_LastName_Assignment_3

o Push the source code, the JavaDoc files and the SQL dump file (!!!not an archive

with the code!!!).

o Share the repository with the user utcn_dsrl

• The draw.io file with the UML use case diagram, package diagram and class diagram –

will be uploaded in the repository with the source code files.

3. Evaluation
The assignment will be graded as follows:

Requirement Grading

• Use an object-oriented programming design, classes with maximum 300

lines, methods with maximum 30 lines, Java naming conventions.

• Use javadoc for documenting classes and generate the corresponding

JavaDoc files.

• Use relational databases for storing the data for the application, minimum

three tables: Client, Product and Order.

• Create a graphical user interface including:

• A window for client operations: add new client, edit client, delete client,

view all clients in a table (JTable)

• A window for product operations: add new product, edit product, delete

product, view all product in a table (JTable)

• A window for creating product orders - the user will be able to select an

existing product, select an existing client, and insert a desired quantity for

the product to create a valid order. In case there are not enough products,

5 points

an under-stock message will be displayed. After the order is finalized, the

product stock is decremented.

• Use reflection techniques to create a method that receives a list of objects

and generates the header of the table by extracting through reflection the

object properties and then populates the table with the values of the

elements from the list.

Layered Architecture (the application will contain at least four packages:

dataAccessLayer, businessLayer, model and presentation).

1 point

Define an immutable Bill class in the Model package using Java records. A Bill

object will be generated for each order and will be stored in a Log table. The bills

can only be inserted and read from the Log table; no updates are allowed.

1 point

Use reflection techniques to create a generic class that contains the methods for

accessing the DB (all tables except Log): create object, edit object, delete object

and find object. The queries for accessing the DB for a specific object that

corresponds to a table will be generated dynamically through reflection.

2 points

Use lambda expressions and streams for list and array processing. 1 point

4. Bibliography
• Connect to MySql from a Java application

o https://www.baeldung.com/java-jdbc

• Layered architectures

o https://dzone.com/articles/layers-standard-enterprise

• Reflection in Java

o http://tutorials.jenkov.com/java-reflection/index.html

• JAVADOC

o https://www.baeldung.com/javadoc

• SQL dump file generation

o https://dev.mysql.com/doc/workbench/en/wb-admin-export-import-management.html

https://www.baeldung.com/java-jdbc
https://dzone.com/articles/layers-standard-enterprise
http://tutorials.jenkov.com/java-reflection/index.html
https://www.baeldung.com/javadoc
https://dev.mysql.com/doc/workbench/en/wb-admin-export-import-management.html

