

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

1 | P a g e

DISTRIBUTED SYSTEMS

Deployment using

Docker

Tudor Cioara Cristina Pop Marcel Antal

Dan Mitrea Alex Rancea Liana Toderean

22023-2024

DISTRIBUTED SYSTEMS CI/CD

2 | P a g e

Contents
1. What is Docker? Why choosing Docker over VMs? .. 3

1.1. How to install Docker .. 4

1.2. Docker container lifecycle ... 4

Docker REGISTRY ... 5

Create Docker Image ... 5
Create Docker Volume .. 5
Configure Network .. 6

Create Container .. 6
Check Running container and logs .. 7
Stop/Remove Container and Image ... 7
Enter terminal of a container ... 7

1.3. Docker Commands Summary .. 7

2. DOCKER deploy example .. 9

2.1. Deployment of Spring application ... 9

Test your solution .. 11

2.2. Deployment of React application ... 12

Test your solution .. 12

3. Application Deployment Diagram... 14

References ... 16

DISTRIBUTED SYSTEMS CI/CD Docker

3 | P a g e

1. What is Docker? Why choosing Docker over VMs?
The Operating System divides the computer memory in several sections, where the Kernel space

and the User space are most important, as shown in Figure 1. The Kernel Space is the portion of

memory where privileged operating system kernel processes are executed, while the User Space

contains unprivileged processes. The separation is performed using a set of privileges. Programs

or processes are run in user mode and are sandboxed, meaning that they are isolated from other

processes from the memory point of view and cannot have complete access to the computer's

memory, disk storage, network hardware, and other resources.

Figure 1. Computer Memory privileges separation (Source [8]).

Starting with 1970, IBM and later other companies started developing special software called

Hypervisor, used to create and run Virtual Machines (VMs) [9]. A VM is an emulation of a

computer system, based on a computer architecture and providing the functionality of a physical

computer [15]. Several VMs with different hardware requirements and guest OSes can be run on

a host computer. Multiple instances of a variety of operating systems may share the virtualized

hardware resources: for example, Linux, Windows, and macOS instances can all run on a single

physical x86 machine. The hypervisor runs in Kernel mode, while the guest OS runs in user

mode, thus theoretically being sandboxed from the host OS.

As opposed to virtualization, Docker is a container-based technology where containers are running

as processes in the user space of the operating system. Docker originally used LinuX Containers

(LXC), but later switched to runC (formerly known as libcontainer), which runs in the same

operating system as its host. This allows it to share a lot of the host operating system resources. At

the low level, a container is just a set of processes that are isolated from the rest of the system,

running from a distinct image that provides all files necessary to support the processes. It is built

for running applications. In Docker, the containers running share the host OS kernel.

DISTRIBUTED SYSTEMS CI/CD Docker

4 | P a g e

Table 1. VM and Docker comparison [10,11,12]

Features VM Docker

Host OS Any Linux – based (if installed on

Windows it installs a VM with

Linux)

Guest OS Any Linux – based (it uses the

kernel of the host operating

system)

Sandboxing Full isolation Can access host through shared

filesystem (such as docker-

volume)

HW Resource requirements High (similar to the physical

machine emulated)

Low (many containers can run

on the same physical machine)

1.1. How to install Docker

Recommended to use Linux. Docker for Windows seems to create a VM with Linux on it, on

which it runs Docker, inside which it then runs containers. So much indirection might lead to

problems in the future (such as managing volumes). Furthermore, docker commands need

privileged access, using sudo command. Follow the tutorial here and install Docker CE [7]:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

1.2. Docker container lifecycle

Figure 2. Docker lifecycle and basic commands

https://docs.docker.com/install/linux/docker-ce/ubuntu/

DISTRIBUTED SYSTEMS CI/CD Docker

5 | P a g e

The first step would be to create an empty folder for each docker container you want to create.

This folder should contain at least 2 files, with exactly these names (since only these are

recognized by docker). The files will be detailed in the following sections.

• Dockerfile – the description of the image

• Docker-compose.yaml – the description of the container.

Docker REGISTRY
The Docker registry [13] is a server application that stores and distributes Docker images. Almost

all custom images that will be build are based on an existing image that already exists in the Docker

Registry [14]. Images can also build from scratch, without inheriting any parent image.

Create Docker Image
The Docker image is described by a Dockerfile. An image can be created either by inheriting a

parent image, or by creating a base image from scratch [14]:

• Inherit a parent image: the new image will customize an existing image (parent

image) from Docker Registry, by referencing it using the FROM directive at the

beginning of the Dockerfile. All the other instructions in the docker file modify the

parent image.

• Create a base image: a base image is created by using the FROM scratch directive at

the beginning of the Dockerfile.

Thus, a docker image can either be used directly from an online repository (e.g. the Docker

REGISTRY) or it can be customized starting from a parent image by describing it in a

Dockerfile and issuing the following command in the terminal:

#docker build –t <image-name>

An example for a Dockerfile for Nodejs server (downloaded from Docker REGISTRY)

customized for deploying an application is the following:

FROM node:8

WORKDIR /app

COPY package.json /app

RUN npm install

COPY . /app

CMD npm start

EXPOSE 3000

By issuing the docker build command, an image with the name <image-name> will be created.

At this stage, the image is stored locally and can be viewed using the command:

#docker image ls

Create Docker Volume
To create a docker volume you just have to run:

#docker volume create <vol_name>.

DISTRIBUTED SYSTEMS CI/CD Docker

6 | P a g e

The information from the volume will be stored at /var/lib/docker/volumes/<vol_name>/_data.

You can copy any files of interest directly here and they will appear in the container in the

specified folder (see Figure 3).

Figure 3. A docker container and communication with the host (port mapping and shared folders using volumes)

To see all available volumes, you can run docker volume ls. To remove a volume you can run

docker volume rm <vol_name>.

Configure Network
A virtual network can be created between the containers. Each network has a name and a IP

address. To create a network, the following command is used:

#docker network create <NET-NAME>

Create Container
There are 3 basic things that we want to synchronize between a docker container and the host:

• ports: map a container's port to a host's port (to be able to access the application from

outside)

• volumes: map a container's folder to a host's Docker volume (to be able to persist

information and do backups)

• environment vars: set the container's environment variables that can be used by the

application for various configurations

You can use docker-compose files to write the configurations you want for a docker container. A

docker-compose file MUST be named docker-compose.yaml, and for the syntax you can check

the existing ones or the internet.

DISTRIBUTED SYSTEMS CI/CD Docker

7 | P a g e

The docker-compose files for the most used images are already created, and you can find them in

Docker-compose Scripts folder at this location (mysql, cassandra, tomcat, gitlab).

In order to run/create a docker container you have to move this docker-compose.yaml file to the

desired computer, cd to its location and run:

 #docker-compose up –d

Make sure the appropriate docker volumes are created before running the above command (e.g.

tomcat volume for tomcat image, check the used volumes in each docker-compose file in

particular).

Containers created and started with this are started and stopped with the classic Docker

commands (start, stop, restart).

Check Running container and logs
The containers that are running can be checked with

#docker ps

The logs of a container can be accessed using

#docker logs –f <container-name>

Stop/Remove Container and Image
Containers and corresponding images can be stopped and removed using the following

commands (in this order):

#docker container stop <container-name>

#docker container rm <container-name>

#docker image rm <image-name>

Enter terminal of a container
One can enter the terminal of a container using the following command:

#docker exec –it <container-name> /bin/bash

Furthermore, using the instruction docker exec –it <container-name>, other commands to the

container can be appended.

1.3. Docker Commands Summary
Interogate running containers:

> docker ps

Interogate existing volumes:

> docker volume ls

Stop and Remove running containers:

> docker stop {name}

> docker rm {name}

DISTRIBUTED SYSTEMS CI/CD Docker

8 | P a g e

Remove existing volume:

> docker volume rm {volume-name}

Use docker-compose.yaml files, if the container needs a volume create it first with:

> docker volume create {volume-name}

Then start the docker container using:

> docker-compose up -d

Volumes location on host:

/var/lib/docker/volumes/

Access container bash:

docker exec -it [container-id] /bin/bash

DISTRIBUTED SYSTEMS CI/CD Docker

9 | P a g e

2. DOCKER deploy example
In this section we will exemplify the deployment on Docker of the Spring demo application and

React application from tutorials for Assignment 1. The code can be downloaded from:

• Spring Application [1]: git clone https://gitlab.com/ds_20201/spring-demo.git

• React Application [3]: git clone https://gitlab.com/ds_20201/react-demo

2.1. Deployment of Spring application
In order to be able to build a custom docker image containing your application’s executable code

a Dockerfile must be configured in the root directory of the project.

A Dockerfile and docker-compose.yml files are already available in the Spring demo if you switch

the branch to docker_production. Otherwise, create a new branch and create yourselves the files

specified in the laboratory work.

#git fetch -a

#git branch -a

#git checkout docker_production

The Dockerfile used for building the image for our application is presented in Figure 5.

Starting with line 1, an intermediate maven image called builder is configured. This is used in

order to build the executable of the application from the source code. Thus, firstly the source code

is copied in the temporary image (src, pom.xml and checkstyle.xml). Normally, a Spring Boot

application can be started using this .jar file. However, due to the boot resources limitation, we

have considered a more optimal approach, by using layered Jars. More details about the

Layered Jars and the reasons for using them can be found at [2].

1. In order to specify that a layered jar is required, firstly you need to modify lines 93-97

from pom.xml file, and add the following configuration, specifying that layers are

enabled.

Figure 4. Section from pom.xml of spring-demo

2. The mvn package is run (Figure 5 line 7) in order to obtain the application’s layered

.jar file from the source code.

3. The layers of the created .jar file are listed using command at line 8

4. The layers of the created .jar file are extracted using command at line 9

5. Lines 14-19 from the Dockerfile presented in Figure 5 contain the DB credentials

https://gitlab.com/ds_20201/spring-demo.git
https://gitlab.com/ds_20201/react-demo

DISTRIBUTED SYSTEMS CI/CD Docker

10 | P a g e

FROM maven:3.8.3-openjdk-17 AS builder

COPY ./src/ /root/src

COPY ./pom.xml /root/

COPY ./checkstyle.xml /root/

WORKDIR /root

RUN mvn package

RUN java -Djarmode=layertools -jar /root/target/ds-2020-0.0.1-SNAPSHOT.jar list

RUN java -Djarmode=layertools -jar /root/target/ds-2020-0.0.1-SNAPSHOT.jar extract

RUN ls -l /root

FROM openjdk:17-jdk-slim-buster

ENV TZ=UTC

ENV DB_IP=localhost

ENV DB_PORT=3306

ENV DB_USER=root

ENV DB_PASSWORD=local-server1

ENV DB_DBNAME=city-db

COPY --from=builder /root/dependencies/ ./

COPY --from=builder /root/snapshot-dependencies/ ./

RUN sleep 10

COPY --from=builder /root/spring-boot-loader/ ./

COPY --from=builder /root/application/ ./

ENTRYPOINT ["java", "org.springframework.boot.loader.JarLauncher","-

XX:+UseContainerSupport -XX:+UnlockExperimentalVMOptions -

XX:+UseCGroupMemoryLimitForHeap -XX:MaxRAMFraction=1 -Xms512m -

Xmx512m -XX:+UseG1GC -XX:+UseSerialGC -Xss512k -XX:MaxRAM=72m"]

Figure 5 Dockerfile for Spring Boot Application

Starting with line 12, a JDK 17 image is used and the layers obtained in the previous temporary

image are copied in this image (lines 22, 23, 26, 27). Furthermore, the details for the DB

connections can be specified in the Dockerfile as environmental variables. In this way, the source

code will not contain the connection details but will be able to read them from the Environmental

Variables set in the Dockerfile. This is possible by having the right configuration in your spring-

boot application.properties file. Each variable form the application.properties has a format of

${ENV_VAR_NAME: default_value} specifying that, if the ENV_VAR_NAME is found in the

local environmental variables, then that value is considered, otherwise the default value is

considered. On one hand, in the development mode (when the project is setup in your IDE) there

are no environmental variables set, so the default values are considered. On the other hand, when

DISTRIBUTED SYSTEMS CI/CD Docker

11 | P a g e

the docker image is launched, the environmental variables are set (Figure 6 lines 15-19) so the

specified values are considered, and the default ones are ignored.

Figure 6. Application Properties section from spring-demo

Line 28 from the Dockerfile from Figure 5, specifies the command with which the newly created

image should be launched. As noticed, there are several options set in order to optimize the

resources consumption during boot time.

Remember to set the spring.jpa.hibernate.ddl-auto property to create/validate/update

according to your database structure and contents.

Test your solution
Before continuing your configuration on the Gitlab repository, make sure that your Dockerfile

written by you is correct and that the obtained image can run successfully.

For this follow the instructions:

1. Create a docker-compose.yml file in the root of your project, containing the following

lines. The name of the image must correspond to the name given as argument to the build

command from step 2 (i.e. “your_image_name”)

Figure 7. Docker-compose file of spring-demo image

2. Build your image using:

• docker build -t your_image_name .

3. Start your image:

• docker-compose up -d

4. Access your deployed application at http://localhost:8080. Furthermore, other endpoints

of the application should be accessible, such as http://localhost:8080/person, returning

the list of persons stored in the DB.

If everything is successful, you can push your newly created files on your repository (create a

new branch like the example given docker_production branch) and proceed with the Gitlab

configuration.

http://localhost:8080/person

DISTRIBUTED SYSTEMS CI/CD Docker

12 | P a g e

2.2. Deployment of React application
For the Frontend application, you can find a React application configured to be built and

deployed using docker [3]. The docker based CI/CD is configured on the docker_production

branch.

 Observations:

• Check the Dockerfile exposed on the docker_production branch:

Figure 8. Dockerfile for docker production branch

Same approach is used as for the Maven project. In the first stage the application is built in

an intermediate node image, while the built results are copied in the final nginx image. The

Envsubst plugin is installed in order to make possible the parametrization of the nginx

scripts with Environmental Variables. More details about this at [6].

• A nginx.conf file must be added in the root directory in order to specify the configuration

for the nginx server

Figure 9. nginx.conf configuration file

Test your solution
Before continuing your configuration on the Gitlab repository, make sure that the Dockerfile

written by you is correct and that the obtained image can run successfully.

For this follow the instructions:

DISTRIBUTED SYSTEMS CI/CD Docker

13 | P a g e

1. Create a docker-compose.yml file in the root of your project, containing the following

lines. The name of the image must correspond to the name given as argument to the build

command from step 2 (i.e. “fe-image”)

Figure 10. Docker-compose configuration file for React app

2. Build your image using:

• docker build -t fe-image .

3. Start your image:

• docker-compose up -d

4. Access your deployed application at http://localhost

If everything is successful, you can push your newly created files on your repository (create a new

branch like the example given docker_production branch) and proceed with the Gitlab

configuration.

DISTRIBUTED SYSTEMS CI/CD Docker

14 | P a g e

3. Application Deployment Diagram
The application composed of the backend, frontend and database will be deployed in docker as

showed by the following architecture:

Figure 11 Deployment Architecture

On the host computer runs the docker runtime that will host three containers, one for each

application:

• Docker container for frontend application – runs a NGINX server and maps

local port 80 to host computer port 3001

• Docker container for backend application – runs a TOMCAT server and maps

local port 8080 to host computer port 8081

• Database container for database server – runs a MYSQL server and maps local

port 3306 to host computer port 3037

This means that from the host computer we can access the servers within the containers as

follows:

• Frontend application: localhost:3001

• Backend application: localhost: 8081

• MySQL server: localhost:3307

These connections allow running and accessing the frontend and the backend application from

the browser. However, they do not allow the backend application connect the MySQL server,

since localhost:3306/3307 from the backend docker container would try to connect to the local

port 3306/3307 within the container, and not the docker container with MySQL database.

DISTRIBUTED SYSTEMS CI/CD Docker

15 | P a g e

To solve this problem, we need to define a docker network to allow addressing the containers

within the network. Thus, containers from a docker network can be accessed similarly to

computers in a LAN. In the example provided in Figure 11, the Spring application will access the

DB using the address of the container and its port as follows: 172.16.052:3306.

Thus, a call to the database through the application will have the following flow (for instance get

all students):

• The browser will access the application using localhost:3001, reach the NGINX server

running on port 80 on the container, and downloads the React application

• The browser, running the React application, will make the REST call to the backend to the

address localhost:8081, that is redirected to the port 8080 of the backend container.

• The Spring application from the backend container will further connect to the database by

accessing the MySQL container using the address within the docker network

172.16.0.52:3306 (and not port 3307 that is mapped on the host)

DISTRIBUTED SYSTEMS CI/CD Docker

16 | P a g e

References

[1] https://gitlab.com/ds_20201/spring-demo

[2] https://www.baeldung.com/spring-boot-docker-images

[3] https://gitlab.com/ds_20201/react-demo

[4] https://devcenter.heroku.com/articles/heroku-cli#download-and-install

[5] https://docs.gitlab.com/ee/user/project/deploy_tokens/

[6] https://developer.okta.com/blog/2020/06/24/heroku-docker-react

[7] https://docs.docker.com/install/linux/docker-ce/ubuntu/

[8] https://www.computerhope.com/jargon/u/user-space.htm

[9] https://en.wikipedia.org/wiki/Hypervisor

[10] https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/

[11] https://www.docker.com/blog/vm-or-containers/

[12] https://www.sciencedirect.com/topics/computer-science/hypervisors

[13] https://docs.docker.com/registry/

[14] https://docs.docker.com/develop/develop-images/baseimages/

[15] https://en.wikipedia.org/wiki/Virtual_machine

https://gitlab.com/ds_20201/spring-demo
https://www.baeldung.com/spring-boot-docker-images
https://gitlab.com/ds_20201/react-demo
https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://docs.gitlab.com/ee/user/project/deploy_tokens/
https://developer.okta.com/blog/2020/06/24/heroku-docker-react
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/
https://www.docker.com/blog/vm-or-containers/
https://www.sciencedirect.com/topics/computer-science/hypervisors
https://docs.docker.com/registry/
https://docs.docker.com/develop/develop-images/baseimages/

