MINISTRY OF EDUCATION AND SCIENTIFIC RESEARCH

L[

TECHNICAL UNIVERSITY
OF CLUJ-NAPOCA

FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

DISTRIBUTED SYSTEMS

CI1/CD Deployment
using Docker on Azure

Rancea Alexandru Marcel Antal Claudia Antal

2023-2024

1|Page

DISTRIBUTED SYSTEMS CI/CD

Contents
I O 1V VT PSPPSR 3
2. DOCKET ...t bbbt e bbb b e e reenes 4
2.1. What is Docker? Why choosing Docker OVEer VIMIS?cccocoveieiiein e 4
2.2, HOW 1O INSTAI DOCKETooviiiiiiiieie ettt 5
2.3. Docker container HFECYCIEcouviiiiieie e e 5
DOCKEN REGISTRY ...ttt sttt sttt sne et ne et e beeneenneenns 6
Create DOCKET IMAQEc.veieeiecie ettt ettt e s e ste e e s reebe e st e sreenreenee e 6
Create DOCKEr VOIUMEccueeiicie ettt sttt ae e sreenneenee e 6
(000) T [V T =l NN L= 1Yo PSSRSO 7
(OF =1 C= T Of0]] 11T OSSR 7
Check Running container and 10gS.........cooveiiiiiiieii e 8
Stop/Remove Container and IMAGEc.oouiririririiieieieie e 8
Enter terminal O & CONTAINETcviiiiiieiece e e 8
2.4, Docker COMMANAS SUMMAIYccuviuiiiiieieiestesie st sn e e b 8
2.5, DOCKER deploy XamPIe.......coviiiiiieiieeie ettt ra e 9
2.5.1. Deployment of Spring applicationcccoeiieiiiiiiiieie e 9
2.5.2. Deployment of React appliCatioN...........ccocviiririeiieie i 12
K O o (o =Tt =T o] ()Y T o | OSSR 15
4. AZUre CI/CD USING DOCKEToiuiiiiiiiiieiieeie e 17
4.1. Azure Cl Automatic Build DOCKEr IMAQe........ccccvvieiiiiiieeieiie e 17
411, CONFIQUIE AZUIC.....oieeeie ettt ettt ettt e ettt e e teaae e reenneenre e 17
4.1.2 AZUIE DBVOPS ...ttt b et 20
4.1.3 AZUIEe PIPEliNG AQENL....coi ittt et re e 22
O 1 | £ O S 25
A.1.5 AZUIE CD ...t n e 29
5. FUINEr deVEIOPMENT ... bbbttt ene s 37
RETEIBINCES ...ttt h bt h ekt e b et he et e e nre e aeene s 37

2|Page

Initial
configuration

Development and

CI/CD Process

DISTRIBUTED SYSTEMS CI/CD Docker

1. Overview

From this tutorial you will learn how to configure the CI/CD pipeline in Gitlab for a spring-boot
application using Dockers. You can use the source code provided in [1] and [3] and setup your
own repository on Gitlab and following the instructions and the exercises from “Test your
solution”. The docker-configuration is found on the docker-production branch in the specified
repositories. By the end of the laboratory you should have your own backend and frontend
application configured to run both the Cl and the CD pipeline using Dockers.

/[]
N []
Ve b
Cl CD
Codestyle
9 Commit and Push Stage Docker Image Docker Image
S

Figure 1. CI/CD Pipeline

With respect to the previous CI/CD setup established for the first assignment on the production
branch of the repositories, the docker-based CI/CD replaces the Build Phase and Deploy Phase
with docker instructions that will be exemplified in the following two chapters.

The Heroku cloud allows for the free account a 60 second boot time and 512MB memory. For
this reason, some extra measures are considered when configuring the Docker images in order to
improve the application startup resources consumption.

3|Page

DISTRIBUTED SYSTEMS CI/CD Docker

2. Docker

2.1. Whatis Docker? Why choosing Docker over VMs?
The Operating System divides the computer memory in several sections, where the Kernel space
and the User space are most important, as shown in Figure 2. The Kernel Space is the portion of
memory where privileged operating system kernel processes are executed, while the User Space
contains unprivileged processes. The separation is performed using a set of privileges. Programs
or processes are run in user mode and are sandboxed, meaning that they are isolated from other
processes from the memory point of view and cannot have complete access to the computer's
memory, disk storage, network hardware, and other resources.

Figure 2. Computer Memory privileges separation (Source [8]).

Starting with 1970, IBM and later other companies started developing special software called
Hypervisor, used to create and run Virtual Machines (VMs) [9]. A VM is an emulation of a
computer system, based on a computer architecture and providing the functionality of a physical
computer [15]. Several VMs with different hardware requirements and guest OSes can be run on
a host computer. Multiple instances of a variety of operating systems may share the virtualized
hardware resources: for example, Linux, Windows, and macOS instances can all run on a single
physical x86 machine. The hypervisor runs in Kernel mode, while the guest OS runs in user
mode, thus theoretically being sandboxed from the host OS.

As opposed to virtualization, Docker is a container-based technology where containers are running
as processes in the user space of the operating system. Docker originally used LinuX Containers
(LXC), but later switched to runC (formerly known as libcontainer), which runs in the same
operating system as its host. This allows it to share a lot of the host operating system resources. At
the low level, a container is just a set of processes that are isolated from the rest of the system,
running from a distinct image that provides all files necessary to support the processes. It is built
for running applications. In Docker, the containers running share the host OS kernel.

4|Page

DISTRIBUTED SYSTEMS CI/CD Docker

Table 1. VM and Docker comparison [10,11,12]

Features VM Docker

Host OS Any Linux — based (if installed on
Windows it installs a VM with
Linux)

Guest OS Any Linux — based (it uses the
kernel of the host operating
system)

Sandboxing Full isolation Can access host through shared
filesystem (such as docker-
volume)

HW Resource requirements | High (similar to the physical | Low (many containers can run

machine emulated) on the same physical machine)

2.2. How toinstall Docker

Recommended to use Linux. Docker for Windows seems to create a VM with Linux on it, on
which it runs Docker, inside which it then runs containers. So much indirection might lead to
problems in the future (such as managing volumes). Furthermore, docker commands need
privileged access, using sudo command. Follow the tutorial here and install Docker CE [7]:
https://docs.docker.com/install/linux/docker-ce/ubuntu/

2.3. Docker container lifecycle

#docker container stop<container-name>

Docker Docker

Image Container !

Running

#docker build —t <image-name>

\ 4
#docker volume create <VOL-NAME> X X
#tdocker container start <container-name>

#docker network create <NET-NAME>

#docker-compose up -d
Figure 3. Docker lifecycle and basic commands

5|Page

https://docs.docker.com/install/linux/docker-ce/ubuntu/

DISTRIBUTED SYSTEMS CI/CD Docker

The first step would be to create an empty folder for each docker container you want to create.
This folder should contain at least 2 files, with exactly these names (since only these are
recognized by docker). The files will be detailed in the following sections.

e Dockerfile — the description of the image
e Docker-compose.yaml — the description of the container.

Docker REGISTRY

The Docker registry [13] is a server application that stores and distributes Docker images. Almost
all custom images that will be build are based on an existing image that already exists in the Docker
Registry [14]. Images can also build from scratch, without inheriting any parent image.

Create Docker Image
The Docker image is described by a Dockerfile. An image can be created either by inheriting a
parent image, or by creating a base image from scratch [14]:

e Inherit a parent image: the new image will customize an existing image (parent
image) from Docker Registry, by referencing it using the FROM directive at the
beginning of the Dockerfile. All the other instructions in the docker file modify the
parent image.

e Create a base image: a base image is created by using the FROM scratch directive at
the beginning of the Dockerfile.

Thus, a docker image can either be used directly from an online repository (e.g. the Docker
REGISTRY) or it can be customized starting from a parent image by describing it in a
Dockerfile and issuing the following command in the terminal:

[#docker build —t <image-name> |

An example for a Dockerfile for Nodejs server (downloaded from Docker REGISTRY)
customized for deploying an application is the following:

FROM node:8

WORKDIR /app

COPY package.json /app
RUN npm install

COPY . /app

CMD npm start

EXPOSE 3000

By issuing the docker build command, an image with the name <image-name> will be created.
At this stage, the image is stored locally and can be viewed using the command:
| #tdocker imageIs |

Create Docker Volume
To create a docker volume you just have to run:
| #docker volume create <vol name>.

6|Page

DISTRIBUTED SYSTEMS CI/CD Docker

The information from the volume will be stored at /var/lib/docker/volumes/<vol_name>/ data.
You can copy any files of interest directly here and they will appear in the container in the
specified folder (see Figure 4).

-e ENV_VAR_NAME=value

Container OS (Linux)
@ Environment variables

Docker

<path_to container_folder>

Container port i
= e
//' =

docker volume create foobar
-v foobar:<path_to_container_folder>

-p <host_port=:<container_port=>

Host OS (Linux)
Ivar/lib/docker/volumes/foobar
Host port
M=

Figure 4. A docker container and communication with the host (port mapping and shared folders using volumes)

To see all available volumes, you can run docker volume Is. To remove a volume you can run
docker volume rm <vol_name>.

Configure Network
A virtual network can be created between the containers. Each network has a name and a IP
address. To create a network, the following command is used:

| #docker network create <NET-NAME> |

Create Container
There are 3 basic things that we want to synchronize between a docker container and the host:

e ports: map a container's port to a host's port (to be able to access the application from
outside)

e volumes: map a container's folder to a host's Docker volume (to be able to persist
information and do backups)

e environment vars: set the container's environment variables that can be used by the
application for various configurations

You can use docker-compose files to write the configurations you want for a docker container. A
docker-compose file MUST be named docker-compose.yaml, and for the syntax you can check
the existing ones or the internet.

7|Page

DISTRIBUTED SYSTEMS CI/CD Docker

The docker-compose files for the most used images are already created, and you can find them in
Docker-compose Scripts folder at this location (mysgl, cassandra, tomcat, gitlab).

In order to run/create a docker container you have to move this docker-compose.yaml file to the
desired computer, cd to its location and run:

| #docker-compose up —d |

Make sure the appropriate docker volumes are created before running the above command (e.g.
tomcat volume for tomcat image, check the used volumes in each docker-compose file in
particular).

Containers created and started with this are started and stopped with the classic Docker
commands (start, stop, restart).

Check Running container and logs
The containers that are running can be checked with
| #docker ps |
The logs of a container can be accessed using
| #docker logs —f <container-name> |

Stop/Remove Container and Image
Containers and corresponding images can be stopped and removed using the following
commands (in this order):

#docker container stop <container-name>
#docker container rm <container-name>
#docker image rm <image-name>

Enter terminal of a container
One can enter the terminal of a container using the following command:
| #docker exec —it <container-name> /bin/bash |
Furthermore, using the instruction docker exec —it <container-name>, other commands to the
container can be appended.

2.4. Docker Commands Summary

Interogate running containers:
> docker ps

Interogate existing volumes:
> docker volume Is

Stop and Remove running containers:
> docker stop {name}
> docker rm {name}

8|Page

DISTRIBUTED SYSTEMS CI/CD Docker

Remove existing volume:
> docker volume rm {volume-name}

Use docker-compose.yaml files, if the container needs a volume create it first with:
> docker volume create {volume-name}

Then start the docker container using:

> docker-compose up -d

Volumes location on host:

Ivar/lib/docker/volumes/

Access container bash:

docker exec -it [container-id] /bin/bash

2.5. DOCKER deploy example
In this section we will exemplify the deployment on Docker of the Spring demo application and
React application from tutorials for Assignment 1. The code can be downloaded from:

e Spring Application [1]: git clone https://gitlab.com/ds_20201/spring-demo.qgit
e React Application [3]: git clone https://gitlab.com/ds_20201/react-demo

2.5.1. Deployment of Spring application
In order to be able to build a custom docker image containing your application’s executable code
a Dockerfile must be configured in the root directory of the project.
A Dockerfile and docker-compose.yml files are already available in the Spring demo if you switch
the branch to docker_production. Otherwise, create a new branch and create yourselves the files
specified in the laboratory work.

#git fetch -a
#git branch -a
#git checkout docker production

The Dockerfile used for building the image for our application is presented in Figure 6.

Starting with line 1, an intermediate maven image called builder is configured. This is used in
order to build the executable of the application from the source code. Thus, firstly the source code
is copied in the temporary image (src, pom.xml and checkstyle.xml). Normally, a Spring Boot
application can be started using this .jar file. However, due to the boot resources limitation, we

9|Page

https://gitlab.com/ds_20201/spring-demo.git
https://gitlab.com/ds_20201/react-demo

DISTRIBUTED SYSTEMS CI/CD Docker

have considered a more optimal approach, by using layered Jars. More details about the
Layered Jars and the reasons for using them can be found at [2].

1.

ok w

In order to specify that a layered jar is required, firstly you need to modify lines 93-97
from pom.xml file, and add the following configuration, specifying that layers are
enabled.

<build>
<plugins»
<plugin>
<groupId>org.springframework. boat</groupld>
<artifactId>spring-boot-maven-plugind/artifactId>

<configuration>
<layers>
<enabled>trus</enabled>
</layers>
</configuration>
</plugin>

Figure 5. Section from pom.xml of spring-demo

The mvn package is run (Figure 6 line 7) in order to obtain the application’s layered
Jar file from the source code.

The layers of the created .jar file are listed using command at line 8

The layers of the created .jar file are extracted using command at line 9

Lines 14-19 from the Dockerfile presented in Figure 6 contain the DB credentials from
the PostgreSQL deployed in Heroku in the previous laboratory session. (aici trb sa
discutam)

5. Lines 14-19 from the Dockerfile presented in Figure 6 contain the DB credentials from
the PostgreSQL that is found locally either by installing Postgres or by using the latest
Postgres Docker Image (docker pull postgres)

10|Page

DISTRIBUTED SYSTEMS CI/CD Docker

3 Dockerfile 1022 Bytes [m | Web IDE | L

FROM maven:3.6.2-jdk-11 AS builder

COPY ./src/ froot/src
COPY ../p
COPY ./c
WORKDIR /root

.xml /root/

ckstyle.xml /root/

RUN mvn package
RUN java -Djarmode=layertools -jar /root/target/ds-2020-9.2.1-SNAPSHOT.jar list
RUN java -Djarmode=layertools -jar /root/target/ds-2020-8.8.1-SNAPSHOT.jar extract

RUN 1s -1 /root
FROM openjdk:11.@.6-jre

ENV TZ=UTC

ENV DBE_IP=2c2-52-48-65-248.cu-west-1.compute.amazonaws.com

ENV DE_PORT=3432

ENV DE_USER=wlryktxygpyomt

ENV DBE_PASSWORD=beeZ8a2afc7fOc3boddidfeRec7278ec5fa5chafbacade3oblffblla7dss51fd
ENV DE_DEMNAME=devideilvquavd

COPY --from=builder /root/dependencies/ ./

COPY --from=builder /root/snapshot-dependencies/ ./

RUN sleep 18

COPY --from=builder /ro
COPY --fram=builder /ro
ENTRYPOINT ["java", "org.springframework.boot.loader.JarLauncher”,”-XxX:+UseContainersSupport -XX:+UnlockExperimentalVMOptions

/spring-boot-loader/ ./

lication/ ./

Figure 6 Dockerfile for Spring Boot Application

Starting with line 12, a JDK 11 image is used and the layers obtained in the previous temporary
image are copied in this image (lines 22, 23, 26, 27). Furthermore, the details for the DB
connections can be specified in the Dockerfile as environmental variables. In this way, the source
code will not contain the connection details but will be able to read them from the Environmental
Variables set in the Dockerfile. This is possible by having the right configuration in your spring-
boot application.properties file. Each variable form the application.properties has a format of
${ENV_VAR NAME: default value} Specifying that, if the ENV_VAR_NAME is found in the
local environmental variables, then that value is considered, otherwise the default value is
considered. On one hand, in the development mode (when the project is setup in your IDE) there
are no environmental variables set, so the default values are considered. On the other hand, when
the docker image is launched, the environmental variables are set (Figure 7 lines 15-19) so the
specified values are considered, and the default ones are ignored.

database.ip = ${DB_IP:localhost}
£{DE_PORT:5432}
${DB_USER:root}

rd = ${DB_PASSWORD:root}
${DE_DBNAME:city-db}

database.por

database.

S

[

i

e
s

database.p

I

[=T

database.name
Figure 7. Application Properties section from spring-demo

Line 28 from the Dockerfile from Figure 6, specifies the command with which the newly created
image should be launched. As noticed, there are several options set in order to optimize the
resources consumption during boot time.

11|Page

DISTRIBUTED SYSTEMS CI/CD Docker

Remember to set the spring.jpa.hibernate.ddl-auto property to create/validate/update
according to your database structure and contents.

2.5.1.1. Test your solution
Before continuing your configuration on the Gitlab repository, make sure that your Dockerfile
written by you is correct and that the obtained image can run successfully.
For this follow the instructions:

1. Create a docker-compose.yml file in the root of your project, containing the following
lines. The name of the image must correspond to the name given as argument to the build
command from step 2 (i.e. “your _image name”)

[2) docker-compose.yml 101 5yte:)

version: '3'
services:

tomcat-db-api:
image: yvour_image_name
ports:
- "BB2d.3ega"

Figure 8. Docker-compose file of spring-demo image

2. Build your image using:
® docker build -t your_image_name .
3. Start your image:
® docker-compose up —d
4. Access your deployed application at http://localhost:8080. Furthermore, other endpoints
of the application should be accessible, such as http://localhost:8080/person, returning
the list of persons stored in the DB.

If everything is successful, you can push your newly created files on your repository (create a
new branch like the example given docker_production branch) and proceed with the Gitlab
configuration.

2.5.2. Deployment of React application
For the Frontend application, the same principles apply when setting the CI/CD pipeline. At
[3] you can find a React application configured to be built and deployed on Heroku using
dockers. The docker based CI/CD is configured on the docker_production branch.

Observations:

e Check the Dockerfile exposed on the docker_production branch:

12|Page

http://localhost:8080/person

DISTRIBUTED SYSTEMS CI/CD Docker

3 Dockerfile 572 gyte: [m
FROM node:8 s bullder
WORKDIR /app
COPY package*.jscn /fapp/

RUN npm instal
COPY ./ Japp/
RUN npm run build

FROM nginx:1.17-alpine
RUN apk --no-cache add curl
RUN curl -L https://github.com/a8m/envsubst/releases/download/vl.1.@/envsubst-"uname -s"-"uname -m° -o envsubst &&
chmod +x envsubst &
my envsubst fusr/local/bin

coPY
D ["/bi

/ » Jetc/ngime/conf.d/default.conf && ngink -g 'daemon off;'"]
COPY --from=builder ,

Figure 9. Dockerfile for docker production branch

Same approach is used as for the Maven project. In the first stage the application is built in
an intermediate node image, while the built results are copied in the final nginx image. The
Envsubst plugin is installed in order to make possible the parametrization of the nginx
scripts with Environmental Variables. More details about this at [6].

e A nginx.conf file must be added in the root directory in order to specify the configuration
for the nginx server. Here the port of the server is passed as an environmental variable by
the Heroku cloud (line 2).

3 nginx.conf 175 8yte: [

server {
listen S{PORT:80};
Server_name _;

root Jusr/share/nginx/html;
index index.html;

location / {
try_files $%uri /index.html;

¥

Figure 10. nginx.conf configuration file

2.5.2.1. Test your solution
Before continuing your configuration on the Gitlab repository, make sure that the Dockerfile
written by you is correct and that the obtained image can run successfully.
For this follow the instructions:

1. Create a docker-compose.yml file in the root of your project, containing the following
lines. The name of the image must correspond to the name given as argument to the build
command from step 2 (i.e. “fe-image”)

13|Page

DISTRIBUTED SYSTEMS CI/CD Docker

4.

B docker-compose.yml 32 Bytes f'n
version: '3'
services:
react:
image: fe-image

ports:
- "Ba:aa"

Figure 11. Docker-compose configuration file for React app

Build your image using:

® docker build -t fe-image .
Start your image:

e docker-compose up —d

Access your deployed application at http://localhost

If everything is successful, you can push your newly created files on your repository (create a new
branch like the example given docker_production branch) and proceed with the Gitlab
configuration.

1l4|Page

DISTRIBUTED SYSTEMS CI/CD Docker

3. Project Deployment

The goal of this tutorial is to deploy the software stack in Docker containers, to handle the
heterogeneity of the platforms and to ease the migration to the Heroku platform.

App —l Spring Application -|

Nginx Server Tomcat Server PostgreSQL Server

Docker & Docker
Container Container

Public address

~ ~
- B - B
@] o]
b | r 1 r
User User

Figure 12. Project Deployment Diagram

Each module of the application, namely the database server and the backend server will be
deployed in Docker containers that will be hosted on the Heroku cloud, thus eliminating the need
of custom scripts used for application deployment in the previous laboratory tutorial “CI/CD
Tutorial and Deployment on cloud (Heroku Cloud)”. The database is deployed in an instance of
PostgreSQL server as shown in the previous laboratory work.

15|Page

DISTRIBUTED SYSTEMS

CI/CD Docker

A - "
GitLab
v H

tE
= -
= 22
E Y
=} - = -
o -
c H
2 £%5
2 5k
g is
&
-
g ‘Q
[
=
£§
o E
T C
% 2
o =
- £
™
o
o
—

Integrate
Code

Integrate
Code

D3. Log inand
pushto
HEROKU

Deplor
Automated e =y

+ Build Stage > lestin . Docker Docker - "
3 Image Image registry
o~ . h
Creat: \/ IIJalteStet \“- D2.Tag
reate \
| latest
» Build Stage > Automated ——» Docker) \Q\r\!age | image
Testing | . |

Image
B . |

HEROKU

Public
Deployment

D4 Runon
HEROKU cloud

—p

~a
B1.Buildimage
B2.Tag image
B3.Pushto

- Gi @
¥ Gitlab Registry
GitLab registry

P1: Push on development branch
P2: Push on production branch

Code
development

Deployon

Lorsleat 2l — local servers

Heroku Registry. @

2. Push image on
Heroku registry

Deployin
- Docker
containers

T1. Local Testing and Deployment Environment

(Optional)

Figure 13. Project Deployment Pipeline

The steps that are involved in deploying the application on the Heroku cloud are depicted in
Figure 13 and described in Table 2:

Table 2. Project Deployment Pipeline Steps

1uawAo|daqg olgnd

Step Description Detailed in section
P1 Develop code locally. Push on development branch Previous laboratory
while adding new features. work: “CI/CD
P2 When a stable version is reached, merge the Tutorial and
development branch with the production branch and Deployment on
push the code. cloud”
T1 Test that the solution runs without problems on a local
(OPTIONAL) | test environment. Initially deploy on web servers, then | Section 2.5.
deploy on local Docker containers.
T2 Test the connection with the Azure Container
(OPTIONAL) | Repository. Push the image to Azure Container Section 4.2.1.
Repository.
Bl Build the image from the code pushed and built on one
of the branches from GitHub. Section 4.1.1.
B2 Tag the built image
B3 Push the image on Azure Container Repository
D1 Login to GitLab registry and get the latest image from
the production branch (other images may exist from
building the development branch).
D2 Tag the latest image Section 4.2.2.
D3 Login and push the image to the Heroku registry
D4 Trigger the automatic deploy of the image on Heroku
cloud

16|Page

DISTRIBUTED SYSTEMS CI/CD Docker

4. Azure CI/CD using Docker

This section covers the steps needed to deploy the Spring-demo app in Docker containers on the
Azure:

» The first part of this section covers the setup for resource groups and the container
registry.

» The second part of this section covers the setup to automate the process of creating
images by the CI pipeline from GitHub and save them in Azure Container Repository.

» The third part of this section covers the setup to automate the process of deployment by
the CD pipeline from Azure.

4.1. Azure Cl Automatic Build Docker Image
Consider the following setup on your docker_production branch. Set your branch as protected
by going on GitHub to Settings — Branches — Add rule.

4.1.1. Configure Azure

Visit https://azureforeducation.microsoft.com/devtools — Sign in and use your student
email (@student.utcluj.ro) to complete the account creation.

Press the Claim your Azure credit now and complete with your own personal information.

After the log in, select from the top bar, the console/terminal icon. Select your preferred
command line interpreter, and press Create storage.

To create a resource group, run the following command in the Azure terminal, created one
Sl {e](-Maz group create
and change the name with your own information.

= i) Search resources, services, and docs (G+/) b user@studentutclujro @
Microsoft Azure ources, services, and B O R e e

b ¢ Education | Get started 2

Welcome to the Azure Education Hub!

Whether you're a student getting started, ai ust interested in building your cloud skills, we've

germ

sourceGroups/nameLa rouphumber™,

ate": "Succeeded”

ull,
1icrosoft.Resources/resourceGroups”

}
PS /home/alexandru> []

Figure 14. Azure Resource Group

17|Page

https://azureforeducation.microsoft.com/devtools

DISTRIBUTED SYSTEMS CI/CD Docker

After the resource has been created, create a container registry by the following command:
az acr create --resource-group nameLastNameGroupNumber --name
containerregistrynamelastnamegroupnumber --sku BasiCEI{eNE] o IR 1s RS (o V (o-Re [fol0 o Mg 13y [
with the one created above and --name with your own information (the container registry name
should not contain capital letters).

Log out and log in again, if the Azure terminal says that there is no available subscription

P Search resources, services, and docs (G+/)

Leaming resources Welcome to the Azure Education Hub!

& Roles Whether you're a student getting started, a ust interested in building your cloud skills, we've

Need help? \\
Support \ .
@

Explore Azure roles Discover free services on Azure Downlead free software
Expl g

Figure 15. Azure Container Registry

To visualize the last two steps, select the Menu bar — Resource groups —
nameLastNameGroupNumber. At this point, the only resource created in our group is the
container registry.

18|Page

DISTRIBUTED SYSTEMS CI/CD Docker

o , 5 - . . ser@student utclujro @
= P Search resources, senvices, and docs (G+/) 5 user@
Microsoft Azure [T wecrmcaLumvessiTy oF cu. @

| nameLastNameGroupNumber <

abscription 1D Tac3c6c2-4e61-4504-a6ea-e8b59Mcact b

Tags (edit de

Resources Recommendations

Typeequalsall X Location equalsall X i Add fier
Showing 1to 1of 1records. [_] Show hidden types No grouping v | [=2 List view

[Name + Type Locat

Figure 16. Azure Resource Group and Container Registry

A mandatory example to do before moving forward is to push to latest Postgres image in our
Azure Container Repository. This is done with the following steps:

1. Open a CLI (Command Line Interpreter) locally (on your personal computer), and login into
the Azure Container Registry:

docker login containerregistrynamelastnamegroupnumber.azurecr.io -u
containerregistrynamelastnamegroupnumber —p sTsnMgSQa0dx5LD=

Etclv6zmJSmMP;

If you receive the following error: accepts at most 1 arg(s), received 3, this means you are on a
Windows machine and need to run the following command:

docker login -u containerregistrynamelastnamegroupnumber —p
STsnMgSQa0dx5LD=gWqEtclv6zmJSmMP
containerregistrynamelastnamegroupnumber.azurecr.io;

The credentials can be found in: Home — Resource Group — namelastNameGroupNumber —
containerregistrynamegroupnumber — Access keys and by enabling the Admin user. Replace the
Login server, Username and password with your own details. Use the first password.

19|Page

DISTRIBUTED SYSTEMS CI/CD Docker

= Microsoft Azure 5 Search resaurces, services, and docs (G+/)

groups > namelastNameGroupNumber > containerregistrynamelastna

containerregistrynamelastnamegroupnumber | Access keys * x

STsnMgSQa0dx5LD=qWqEtclvEzmSmMP

password2 YRWV14JlisBMI2eubQKDYnsINZR=dy/O

Figure 17. Azure Container Registry Credentials

2. Pull the latest docker image for Postgres

docker pull postgres:;

3. Create a tag for the Postgres image

docker tag postgres containerregistrynamelastnamegroupnumber.azurecr.io/db

Modify the containerregistrynamelastnamegroupnumber with your details.

4. Push the image to your Azure Container Registry

docker push containerregistrynamelastnamegroupnumber.azurecr.io/db

Modify the containerregistrynamelastnamegroupnumber with your details.

5. Go to Home->Resource Groups — nameLastNameGroupNumber —
containerregistrynamegroupnumber — Repositories to check if the image is in your Azure
Container Repository.

4.1.2 Azure DevOps

20|Page

DISTRIBUTED SYSTEMS CI/CD Docker

BT

Home

Azure DevOps - X

Azure DevOps

Plan smarter, collaborate better, and
ship faster with a set of modern dev
services

My Azure DevOps Organizations

Get started using Azure DevOps
Billing management for Azure DevOps

Figure 18. Azure DevOps

Before developing the CI/CD pipeline, go to My Azure DevOps Organziations — Create new
organization and follow the steps presented in Figure 19 and Figure 20.

J Azure Devops
user@student.utcluj.ro
Almost done...

Name your Azure DevOps organization

[a et \

We'll host your projects in

‘ West Europe v ‘

Enter the characters you see
New Audio

S
DD

Figure 19. Create Azure DevOps Organization

21|Page

DISTRIBUTED SYSTEMS CI/CD Docker

Ep— ce o s @
I. ® an TLS 1.0, TLS 1.1 and weak cipher suites of TLS 1.2. I your tools are dependent on legacy TLS for leasetake o
Ts12, th
New organization
Create a project to get started
Project name *
[project 1 %
Visibility
@ e @
Public ® Private
Anyone on the internet le you gi
«can view the project. mmﬁy;:m to
Certain features like view this project.
TFVC are not
supported.

Public projects are disabled for your organization. You can turn on public
visibility with organization policies.

€ Organization settings
Figure 20. Create a project in Azure DevOps

4.1.3 Azure Pipeline Agent

To be able to run the CI/CD pipeline, we need an Agent that is responsible for all the
instructions. Due to student account limitations, we must run the Agent locally. Select Project

settings from the bottom-left of the screen — Agent pools — Add pool and select Self-hosted
for Pool type and name it local.

Add agent pool

Agent pools are shared across an organization.
Pool to link:

@ MNew () Existing

Pool type:
[selfhosted

A pool of you set
Jobs. Learn more.

Name:

[tocal

Description (optional):

@ Markdown supported.

Pipeline permissions:

@ Grant access permission to all pipelines

Figure 21. Agent pool

22|Page

DISTRIBUTED SYSTEMS CI/CD Docker

The list of agent pools should refresh, and a new item named local should appear. The Azure
Pipeline Agent is used to:

1. Build the image for the code from GitHub, push it on Docker Registry
2. Get the image from Docker Registry and deploy the container on Docker on Azure

Download the Ubuntu VM Image linked
https://drive.google.com/drive/folders/1A5 L8WHCgsUutVbfwtl7ZMQg4uPPufjY?usp=sharing
Install Virtual Box (https://www.virtualbox.org/wiki/Downloads) and open the VM Image

downloaded. It has the Azure Pipeline Agent preinstalled and all you have to do is to configure
the access credentials.

Note:

If you use the agent from the VM, login intro the VM and use the Ubuntu commands listed below.
If you use a Windows machine, use the corresponding commands.

Before running the config command, we need an access token. Select the icon highlighted in
Figure 22 — Personal access tokens — New Token and configure the token as presented in
Figure 23. Note: you can increase the expiration date to your needs.

J o BUPNUM... projec settings S = 0 A @
o R . * Preview features
Project Settings 0 local Updat
oject
¥ s2 Pprofile
Jobs Agents Details Security Analytics N
%@ Time and Locale
& cenent
O permissions
% Overview
= Notifications
Team:
P > @ Th
permissions 9 Theme
nb Usage
f Notifications L / 1
Service hooks iy £ Personal access tokens
A ashboords . ssH public keys
B soards No jobs have run on this agent pool 7 Alternate redentisls
. * . . . *
Figure 22. Personal Access Tokens *trebe highlight la imgt
—_— -
) Azure Devops
Create a new personal access token X
i Personal Access Tokens
uusf'ﬂf settlngs These can be used instead of a password for applications like Git or can be passed in the authorization header to access REST APis Name
4+ NewToken) Revoke Edit () Regenerate agent-token |
Organization
Accotint Token name Status Organiz
nameLastNameGroupNumber
A2 profi
Profile Expiration (UTC)
S Time and Locale 30 days | 10/14/2022 i
O permissions
Scopes
Preferences Authorize the scope of access associated with this token
Scopes@ Full access
= Notifications Custom defined
% Theme
b Usage
Security

%5 Personal access tokens
$ ssH public keys
/@ Alternate credentials

© Authorizations

23|Page

https://drive.google.com/drive/folders/1A5_L8WHCgsUutVbfwtl7ZMQg4uPPufjY?usp=sharing
https://drive.google.com/drive/folders/1A5_L8WHCgsUutVbfwtl7ZMQg4uPPufjY?usp=sharing
https://www.virtualbox.org/wiki/Downloads

DISTRIBUTED SYSTEMS CI/CD Docker

Figure 23. Personal Access Token Settings

Make sure you are saving the token displayed on screen, locally on a text file. If you forget the
personal token, you need to regenerate the token or create a new one and change the value
everywhere it was used.

Login into the VM and using your favorite command line interpreter (Bash/PowerShell), you
must be within the agent's directory before trying to run the config command -
Ubuntu, .\config.cmd - Windows).

The configuration is the following:
1. your organization server url — https://dev.azure.com/nameLastNameGroupNumber
2. enter authentication type (press enter for PAT) - press enter
3. personal access token — the personal access token generated in Figure 23
4. agent pool — local
5. agent name — agent
6. press enter

If you use a Windows machine only enter Y for run agent as Service. Y again, Enter, Enter

>> End User License Agreements:
Building sources from a TFVC repository requires accepting the Team Explorer Everywhere End User License Agreement. This step is not required for building sources from Git repositories.

A copy of the Teanm Explorer Everywhere license agreement can be found at:
/hone/heater-server /Desktop/myagent/license. html

Enter (Y/N) Accept the Team Explorer Everywhere license agreement now? (press enter for N) >
>> Connect:

Enter server URL > https://dev.azure.con/namelLastNameGroupNunber

Enter authentication type (press ei

ENter Personal aCCess tOKEN > *H#tkhAMaaahksaskd b b kAN A RANARERAARRERARRRRARRRRNH R R R
Connecting to server ...

>> Register Agent:

Enter agent pool (press enter for default) > local
Enter agent name (press enter for heaterserver-v530-15ICB) > agent
Scanning for tool capabilities.

Connecting to the server.

Successfully added the agent

Testing agent connection.

Enter work folder (press enter for _work) >

2022-69-14 06:21:03Z: Settings Saved.

Figure 24. Agent Configuration

Prerequisites
1. Add user to docker group:
sudo usermod -aG docker $USER

2. Login Azure
Login with your azure credentials
Verify if dockerAccessToken.json exists in /home/$USER/.azure

To start the agent, execute the (Only if you haven’t set the agent as a Service) -
Windows or Fig[gsls - Ubuntu command. To install the service (Ubuntu only), run the following
commands: Sie[NSYRRIISEN) and SI[ORVMIISEIL. To visualize the agent's tasks run

24|Page

DISTRIBUTED SYSTEMS CI/CD Docker

Figure 25. Agent Status

To verify that all the configurations are right and the connection with the Azure DevOps
platform is done, go to, Project Settings — Agent pools — local — Agents. Under the name of
the agent you can see his status.

<]
< .

Project Settings g local Update all agents m g
+

Jobs Agents Details Security Analytics

= General
E Overview Enabled

Jeams Sgent idle 22100 @ on
permissions :
0 Notifications

Service hooks
A oosnbords
B Boards

Project configuration

Team configuration

GitHub connections

Figure 26. Local Agent Status Visualization

4.1.4 Azure CI

Continuous Integration (CI) refers to a pipeline of steps that are applied whenever your code is
pushed on the code repository. It aims to validate that the code you developed does not affect the
previously developed features and that the integration between your newly developed code and
the previous code is done correctly. Specifically, this can be done in 3 steps:

1. Verify that the project builds correctly

2. Verify that the tests run and are successful

3. Verify that there are no major code style issues

To create a pipeline, you must select Pipelines — New pipeline. Because our code is present in a
GitHub repository, we will continue by selecting GitHub.

25|Page

DISTRIBUTED SYSTEMS CI/CD Docker

©J Azure Devops nameLastNameGroUpNUM project 1/ pipelines 2 = a4 -9
n roject 1 L () Aaure DevOps proceeds in rollout of changes to permanently disable communication over TLS 1.0, TLS 1.1 and weak cipher suites of TLS 1.2. If your tools are dependent on legacy TLS for communication with Azure DevOps, please take
Le Y necessary actions to enable TLS 1.2, as detailed in the blog.
& overview Connect Select Configure
B ooards New pipeline
Where is your code?

Repos
(F) Azure ReposGit vam
o eielines el

& Pipelines u Bitbucket Cloud vame
Hosted by Atlassian
&8 Environments
GitHub AL
& Releases O Home to the world's largest community of
WL Library

Q GitHub Enterprise Server AL
= Taskgroups " Tof b e

T Deployment groups Q osE
& Testlans == Subversion

W Centralized vei Apac
B actifacts

Figure 27. Pipeline Creation — GitHub

After you log in with your GitHub credentials, you should select your repository.

@) Azure Devops namelastiameGroupNum project1 / Pipelines B = A “ @

B roectt 4 (o Aaure DevOps proceedsin rollout of changes to permanently disable communication over TLS 1.0, TLS 1.1 and weak cipher sutes of TLS 1.2 Fyour taols are dependent on legacy TLS For communication with Azure DevCps, please take
P) necessary actions to enable TLS 1.2, as detailed in the blog.

& overview Connect Select Configure Review

B soards

New pipeline

s Select a repository
o Pipelines 7 My repositories
s Pipelines
user/nameLastNameGroupNumberBackend private

B Environments e
& Releases @ showing the most recently used repositories where you are a collaborator.

IFyou can't find a repository, make sure you provide access.

You may also select a specific connection.
WL Library

Figure 28. GitHub Available Repositories

You will be redirected to GitHub, scroll down to Repository access section, select Only selected
repositories and press Approve and Install.

[—

v Read and write access to checks, code, comit statuses, deployments, issues, and pull requests
Archives

& security log
& sponsorship log Repository access
<> Developer settings
Azure Pipelines suggested installation on the following repositories.
O All repositories

® Only select repositories
t atleast one repository

3 select repositories ~

jected 1 re

8 userinamel x

Approve and install Cancel

Figure 29. GitHub Repository Access Section

To configure the pipeline, select Docker (Build and push an image to Azure Container Registry)
and configure the container registry name with the one you created in the first step of this
tutorial.

26| Page

DISTRIBUTED SYSTEMS CI/CD Docker

Image Name
‘ namelastnamegroupnumberbackend

Dockerfile
| stBuild sourcesbirectory)/Dockerfile

Figure 30. Configure your pipeline - Docker

You must replace the code after the stages tag with the X proprieties found on GitHub. Select
save and run.

Save and run X
Saving will commit azure-pipelines.yml to the repository.

Commit message
‘ Set up @ with Azure Pipelines

Optional extended description

Add an optional description...

@® Commit directly to the main branch
() Create a new branch for this commit

Figure 31. Pipeline Stages Setup

After the job is finished, there are 3 main tabs available. On the summary tab (Figure 32), we can
verify that the project builds correctly. On the Tests tab (Figure 33) we can check that the tests
run and how many are successful and on the Code Coverage tab, we can see the code style issues
(Figure 34).

27|Page

DISTRIBUTED SYSTEMS

ZJ Azure DevOps namelasthameGroupNum.

. project 1

ﬂ Overview
B soards

B repos

o pipelines
& Pipelines
B Environments
2 Releases

W Library

= Taskgroups
" Deployment groups
A Testplans
B ariracts

B Project settings

) Azure DevOps namelastNameGroupNum...

B proect 1

& overview
B soards

B repos

o Pipelines
&4 Pipelines
B Environments.
& Releases

W Library

= Taskgroups

T Deployment groups

A Testrlans
BB Artifects

& Project settings

du

«

JL

«

project 1 Pipelines

user.namelastNameGroup...

20220914.1

© #20220914.1 « Set up Cl with Azure Pipelines

s User.nameLastNameGroupNumberBackend

(D This run is being retained as one of 3 recent runs by pipeline.

Summary Tests Code Coverage Extensions

Triggered by user

Repository and version
O user/nameLastNameGroupNumberBackend
¥ main ¢ scafdads

Errors 1 Warnings 1

) unknown shorthand flag: 'f' in -f
Build * Build and push an image to contais

Jabs
Name
@ Code Coverage

© Build

project 1 Pipelines

user.nameLastNameGroup...

Time started and elapsed
£ Today at 9:49 AM
® 1m3ds

related
0work items
2 published

Status

Success

Success

Figure 32. Cl Pipeline Summary

202209141

© #20220914.1+Setup Cl with Azure Pipelines

W user.nameLastNameGroupNumberBackend

(@ This runis being retained as one of 3 recent runs by pipeline.

Summary Tests CodeCoverage Extensions

Summary

3 Run(s) Completed (3 Passed, 0 Failed)

24 24 @ Passed
0 @ Failed
0 Others.

Total tests

] Bug Link

100%

Pass percentage

T 100%

16s 199ms

Run duration

T +165199ms

0

Tesks not reported

Hooray! There are no test failures.

Change the test outcome filter o view tests relevant to you

Figure 33. Cl Pipeline Tests

28|Page

|

Duratien

© sos

© 285

|

Tags

CI/CD Docker

Vlew retention leases

View change

Tests and coverage
© 100% passed
E: 52.94% covered

& Testrun v

Test file

Vlew retention leases

£ columnoptions Y

< Owner .~ Aborted (+1) - X

DISTRIBUTED SYSTEMS

CI/CD Docker

ZJ Azure DevOps nameLastNameGroupNum project Pipelines jel = A @
@ projectt + #20220914.1 + Set up Cl with Azure Pipelines g
O et bt =
& overview
% Boards 1) This runis being retained as one of 3 recent runs by pipeline. View retention leases
Repos
summary Tests Code Coverage Extensions
o Pipelines
Sessionsds-2020
| i Pipelines
B Environments ds-2020
& Releases Element Missed Instructions Cov. Missed Branches Cov. Missed Cxty Missed Lines Missed Methods Missed Classes
ro.tuc.ds2020.controllers. handlers.exceptions.model 33% nfa 19 27 34 50 19 27 5 6
B Library ro.tuc.ds2020.controllers.handlers 53% = 100%2 5 16 30 2 4 o 1
ro.tuc.ds2020.dtos 58% 50% 14 26 18 47 9 21 0 2
W Task grovps : 2 = 42% wa 3 6 5 1 3 6 [2
- 0 ro.tuc.ds2020. services L 73% == 50% 1 6 2 17 0 5 0 1
o e B ro.tuc.ds2020.entities - 55% na 5 10 9 19 s 10 0 1
ro.tuc.ds2020 = 15% nja 2 3 4 5 2 3 0 1
A restplans : - 100% na 0 2 0 4 0 2 0 1
ro.tuc,ds2020.dtos validators = 100%== 100%0 4 0 4 0 3 0 1
& Aniracts Total 296 of 630 53% 6of 16 62% 46 89 88 187 40 81 5 16
Created with JaCoCo 0.8.7.202105040129
& Project settings «

Figure 34. Cl Pipeline Code Coverage

4.1.5 Azure CD

The continuous deployment aims at delivering as fast as possible the new features added through
your code to the deployment servers. If all the previous steps (build, test, and check style) are
successful, it will proceed with the deployment of your application on a server. To avoid
unnecessary deployments, it is recommended to configure the deployment stage such that to be
run only for specific branches, when the feature you are working on is completed, and ready to

be delivered to the end-user.

To create a pipeline, you must select Pipelines - Releases — New pipeline. Change the stage

name to Development.

29|Page

DISTRIBUTED SYSTEMS CI/CD Docker

) Azore Devops nameLssthameGroupNum... | projectt | Pipeines / Releases o = - @
B rroject + All pipelines > ¥ New release pipeline save
e Pipeline Tasks~ Variables Retention Options History
Boards
% Stage [i] Delete = Move
— Artifacts | + Add Stages | + Add oevelopmen
B Properties A
o Pipelines Name and owners of the stage
A stage name
&4 Pipelines £ Development 2
A | 1job, 0 task Development
B Environments Stage owner
.
5 Releases use x
Schedule
W\ Library @ notse

= Taskgroups

T Deployment groups.

A Testrlans
& Aniracts

& Project settings «

Figure 35. Create a CD Pipeline

Before starting with the tasks within the pipeline, a connection between the Cl and CD must be
set up. This is done by pressing on Add an artifact — select Source type as Build, select your
current Azure DevOps project, the build pipeline and the default version.

X
B eoect | All pipelines > % New release pipeline Add an artifact
& overview Pipeline T varial " N Optior Histary Source type
Boards ¥, 0 O ﬁ
— . Build Azure Rep Github PV
B repos Artifacts | Add Stages | Add ai F Hul
5 more artifact types
% Pipelines
Project* (@
.
Y Pipelines & a
s Pipelines 3 pmen -
o Development p— =
. : . artifact
B Environments source (build pipeline}) * @
5 Releases ranceaaa.nameLastNameGroupNumberBackend ~
N Library Defaultversion* ()
= Taskgroups Latest v
T Deployment groups Source alias *

_ranceaaa.nameLastNameGroupNumberBackend

& TestPlans
B aniraces (D) The artifacts published by cach version will be availabie for deployment in release
pipelines. The latest successful build of
published the following artifacts:
Code Analysis Results, Code Coverage Report_d.
roject setting

Figure 36. Add an Artifact - Build

After the artifact has been added, press the lightning icon to creates a release every time a new
built is available.

30|Page

DISTRIBUTED SYSTEMS

©J AzureDevops nameLastNameGroupNur

B proect 1
B overview
B Boards
Repos

o Ppipelines
o Pipelines
& Environments
& Releases
M Library

= Taskgroups

T Deployment groups

& Testplans
BB Atifacts

@ Project settings

B

«

pipelines

All pipelines > 7+ New release pipeline

Pipeline Tasks Variables ~ Retention Options History
Artifacts | - Add Stages | -+ Add
. E
£ Development
_user.nameLast 2 it
NameGrouph 1job. 0 tat

@ Schedule

CI/CD Docker

o
="
2]

B save

Continuous deployment trigger
Build: _user.nameLastNameGroupNumberBackend

@D Enabled

Creates a release every time a new build is available.

Build branch filters @
R
No filters added.

+ Add v

Pull request trigger

8uild: _user.nameLastNameGroupNumber8ackend
®) Disabled

(@ Enabling this will create a release every time a selected artifact is available as part of a
pull request workflow

Figure 37. Trigger the CD when a Build was successfully added

Before the CD pipeline starts, the Docker Compose file needs to be available. We will do this by
adding another artifact. Select Source type as GitHub, and select the Source (repository) to your
repository where the Docker Compose file is found. Select the Default branch and the Default

J
B rrojectn

& overview

Boards

E Rrepos

o Pipelines

i Pipelines

B Environments

5 Releases

i\ Library

= Taskgroups

T Deployment groups
& TestPlans

g Artifacts

& Project settings

Version to Latest from the default branch.

All pipelines > T New release pipeline
Pipeline Ta variak Retention Optic Hist
Artifacts | + Add Stages | + Add
&
4
¥ Development

user.na

NameGroup

Add an

artifact

Add an artifact

Source type

u,*f ¢ (] ®

[Azure Rep + GitHub FVC

5 more artifact types v/
Service * | Manage ©

github.com_ranceaaa v| O+ New
source (repository) * @

ranceaaa/cd-azure

Defaultbranch* (@

Default version * (@

‘ Latest from the default branch ~

() checkout submodutes O
() Checkout files From LFS (D)

shallow fetch depth (@

Source alias * (D

_ranceaaa_cd-azure

Figure 38. Add an Artifact with the Docker Compose file

To configure the pipeline to work with our local agent. Tasks — Agent job — Agent pool —

local.

31|Page

DISTRIBUTED SYSTEMS CI/CD Docker

@) Awre Devops tNameGrouph voject1 | Fipelines | Reles 5) ()
B eroject 1 + All pipelines > ¥ New release pipeline B save
Pipeline Tasks v Variables Retention Options History
B overview
Development .
Q Boards Agent job @
Repos Agent job
B Runon age Display name *
o pipelines Agent job

s Pipelines Agent selection

B Environment ts Agent poal (D | Peolinformation | Manage =
Hosted Windows 2019 with V52019 v
2 Releases o
Hosted
W Libran
v 3 Azure Pipelines
= Taskgroups o Hosted Windows 2019 with V52019
T Deployment groups Private
& Default (v
& Testplans
& local
BB Artifects R
Parallelism ()
Timeout* @
0
Job cancel timeout * (3
1
Artifact download A
& _ranceaaa.nameLastMan Backend Latest ~ Selected all artifacts
& Project settings « © _ranceaaa_cd-azure specify at the time of release creation ~ Selected all artifacts

Figure 39. Agent Job Configuration

To add a new task, press the + button next to Agent job, and search for Docker Compose. Add
the Docker Compose task, and select you Azure subscription.

The next configuration must to be done, to work with the Docker Compose file we are pulling
from our GitHub repository:

1. Change the Docker Compose file path to —
$(System.DefaultWorkingDirectory)/_usernameGithub_cd-azure/docker-compose.ymi

2. Complete on Action field - Run a Docker Compose command
3. Command — up —d

4. On Advanced Options add the Working Directory —
$(System.DefaultWorkingDirectory)/_usernameGithub_cd-azure/

5. Press Save

32|Page

DISTRIBUTED SYSTEMS

@) Arure DevOps namelastiameGroupNum project | Pipelines / Releases
B eroject 1 + Allpipelines > ¥ New release pipeline
& ovenview Pipeline Tasks~ Variables Retention Options History

Development

% Boards Deployment proce

Bz Agent job
B Runon agent
Pipeli
q peines 2. Run a Docker Compose command
- Docker Compose

Pipelines

Environments

ey

a

2 Releases
W Library
L

Task groups

" Deployment groups.

A Test Plans
BB Artifects

CI/CD Docker

[Powe]

save

]
[=:
X

e

Run a Docker Compose command

Container Registry Type * (D)
Azure Container Registry v
Azure subscription (3 | Manage

Azure for Students (1ac9c6c2-4e61-4504-a6ea-eBb59Fcact oc) v O

Azure Container Registry (@)

cont; vl O

Docker Compose File * (@

tem Directory)/_user_cg-azure/idocker-comp

&

Additional Docker Compose Files (@

Environment Variables (3

Project Name (3)

$(Build Repository.Name)

@ Qualify image Names (D
Action* (@

Run a Docker Compose command -
Command * (@

wp-d

Figure 40. Agent job - Docker Compose Configuration 1

& Project settings &«

) Azure Dsvops nsmelssthameGroupNum... | project1 | Fipelines | Releases

B project s + Al pipelines > T New release pipeline

& oveniew Pipeline Tasks~ Variables Retention Options History

Development

% Boards Daployment proce
Repos Agent job

o Pipelines

Run a Docker Compase command
Docker Compase

uon
u

Pipelines

Environments

s

a

& Releases
W\ Library
L

Task groups

" Deployment groups.

A Testrlans
P Aritacts

@ Project settings «

EEEEN

Save

i
[=:
X

e

EnvionEns vanavies ([

Project Name (3
$(Build Repository.Name}

@ Qualify Image Names (©
Action* @

Run a Docker Compose command ~
Command * @
up -d

Arguments (@

Advanced Options ~
Docker Host Service Connection () | Manage (2

v O o+ New

() No-opif no Docker Compose File (D
() Require Additional Dacker Compose Files (@
Working Directory (3

$(System

ry)i_user

Docker Compose executable Path)

Control Options ~

Qutput Variables «

Figure 41. Agent job - Docker Compose Configuration 2

The second task that must be added is Bash. This contains CLI commands responsible for

deploying the applications.

33|Page

DISTRIBUTED SYSTEMS CI/CD Docker

©J Azure Devops tNameGroupN ; P qelea o) (]
B proect 1 -+ All pipelines > ¥ New release pipeline & Create release -+

Pipeline Tasks v Variables Retention Options History
B overview

Development

@ soards) O bash
Add tasks Refresh

Repos Agent job

Pipel ﬂ o
f ipalines 2. Run a Docker Compose command

\

s Pipelines c i
.ommand line
B Environment ts

2 Releases
Marketplace ~

W\ Library
') Script Retryer tool
= Taskgroups . .

""" Deployment groups

& Testrlans 9 Applitools Eyes Integration

BB Artifects @ Authenticated Scripts

@ Project settings «

Figure 42. Bash Script

Select the Type to Inline and add the following script:

1. Move to the _usernameGithub_cd-azure folder.

cd usernameGithub cd:;

2. After the first task is finished (docker compose up), the running containers should be stopped.

docker compose down;
docker-compose down;

3. Login into the Azure Container Registry:

docker login containerregistrynamelastnamegroupnumber.azurecr.io -u
containerregistrynamelastnamegroupnumber -p sTsnMgSQa0dx5LD=qWqEtclv6zmISmMP;

The credentials can be found in: Home — Resource Groups — namelastNameGroupNumber
— containerregistrynamegroupnumber — Access keys and by enabling the Admin user.
Replace the Login server, Username and password with your own details.

4. Create a Docker aci context on your resource group

docker context create aci acicontext --resource-group namelLastNameGroupNumber;

5. Use the context created above.

34|Page

DISTRIBUTED SYSTEMS CI/CD Docker

docker context use acicontext;

6. Start the containers

docker compose up;

' New release pipeline

[save = view releases -+

Pipeline Tasks » Variables Hetention ~Options History
Development . - s -
Beployment pr Bash @ T view YAML [i] Remove

. Task version | gzx v
Agent job 3
=. RunaDocker Compose command Display hame *
- ook : Bash Seript

Bash Script -] Type (D

Bash H

Path (@) Inl
istry \amegroupnumb -p

Advanced ~

Control Options ~
Environment Variables

Qutput Variables ~

Figure 43. Bash Inline Script

After the Development Release is finished and Saved, press Create release and press Deploy.

B rrojectt t %" New release pipeline - Release-1 ~ Development
Development
Deploy release

Overview Commits Work Items

To be deployed (Deploying for the first time)
sy Release-1

Artifacts
L Pipeline O ranceaaa_cd-azure / 72ec76cdd
nvironment: X P meLastNameGro... / 20220914.1
Comment

Figure 44. Create Release

When the next push occurs in your GitHub repository, the build pipeline will start, and if it is
completed successfully, the CD pipeline starts. The output should be like Figure 45.

3B|Page

DISTRIBUTED SYSTEMS CI/CD Docker

©J Azure Devops) ; 2 (]
B project t """ New release pipeline > Release-1 > Development
4 Pipeline Tasks Variables Logs Tests < Deploy ©) Refresh & Downloadalllogs # Edit 7
& overview
Deployment attempt #3 i

B Boards Py P v Agent job Started: 9/14/2022, 11:03:11 AM

Pool: | Agent: agent =+ 1Im3s
Repos & Agentjob

@ Initialize job - <15
o Pipelines

© Download Artifacts 1
da Pipelines

© Download artifact -_ranceaas.nameLastNameGroupNumberBackend - Code Analysis Results e 2
B Environments

© Download artifact -_ranceaaa.nameLastNameGroupNumberBackend - Code Coverage Report_d as
& Releases

© Runa Docker Compose command 1
WL Library

© Bash Script e 525
= Task groups

© Finalize Job <15

Deployment groups.
& Testrlans
B Aritacts

& Project settings «

Figure 45. Complete CD Pipeline Logs

If Bash Script log is selected, the IP of the server can be found, and tested by copying it
in a browser.

) Azure DevOps namelastNameGro

Bash Script Previous task Next task

B projectt +
& overview

B Boards

Repos

o pipelines

ds Pipelines

B Environments

& Releases

M Library
KUBERNETES ENOPOINT ORCHESTRAT

% Task groups

T Deployment groups

& Testplans +65-14 noby Curre R_HOST bas unix
B Aifacts

comMaND

TS
20.79.196.104:5432->5432/tcp
20.79.196.104:8080->8080/ tcp

& Project settings «

Figure 46. IP of the Deployed Containers

To visualize the deployed application and the containers, go to Home — Resource
Groups — nameLastNameGroupNumber — work — Containers.

36|Page

DISTRIBUTED SYSTEMS CI/CD Docker

P Search resources, services, and docs (G+/)

cPu I Memory » Network bytes receivs ed 2

|zw Ussge o) ey Usoge s ictmerk Btes Received P Second (o)

247 16.57we 67.13:

Figure 47. Deployed Application Dashboard

5. Further development

> Apply the configuration from section 4 to deploy the React Application on Azure.
» Modify the host.js file by referencing the public IP address of the Spring App container.
> Deploy the application resulted from Assignment 1 on Azure cloud.

References

[1] https://gitlab.com/ds_20201/spring-demo

[2] https://www.baeldung.com/spring-boot-docker-images

[3] https://gitlab.com/ds_20201/react-demo

[4] https://docs.qgitlab.com/ee/user/project/deploy _tokens/

[5] https://developer.okta.com/blog/2020/06/24/heroku-docker-react

[6] https://docs.docker.com/install/linux/docker-ce/ubuntu/

[7] https://www.computerhope.com/jargon/u/user-space.htm

[8] https://en.wikipedia.org/wiki/Hypervisor

[9] https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/
[10] https://www.docker.com/blog/vm-or-containers/

[11] https://www.sciencedirect.com/topics/computer-science/hypervisors
[12] https://docs.docker.com/registry/

[13] https://docs.docker.com/develop/develop-images/baseimages/

[14] https://en.wikipedia.org/wiki/Virtual_machine

37|Page

https://gitlab.com/ds_20201/spring-demo
https://www.baeldung.com/spring-boot-docker-images
https://gitlab.com/ds_20201/react-demo
https://docs.gitlab.com/ee/user/project/deploy_tokens/
https://developer.okta.com/blog/2020/06/24/heroku-docker-react
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/
https://www.docker.com/blog/vm-or-containers/
https://www.sciencedirect.com/topics/computer-science/hypervisors
https://docs.docker.com/registry/
https://docs.docker.com/develop/develop-images/baseimages/

