

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

1 | P a g e

DISTRIBUTED SYSTEMS

CI/CD Deployment

using Docker on

Heroku Cloud

Ioan Salomie Tudor Cioara Marcel Antal

 Claudia Antal

22023-2024

DISTRIBUTED SYSTEMS CI/CD

2 | P a g e

Contents
1. Overview ... 3
2. Docker ... 4

2.1. What is Docker? Why choosing Docker over VMs? ... 4
2.2. How to install Docker .. 5
2.3. Docker container lifecycle ... 5

Docker REGISTRY ... 6
Create Docker Image ... 6

Create Docker Volume .. 6
Configure Network .. 7
Create Container .. 7
Check Running container and logs .. 8

Stop/Remove Container and Image ... 8
Enter terminal of a container ... 8

2.4. Docker Commands Summary .. 8

2.5. DOCKER deploy example ... 9

2.5.1. Deployment of Spring application .. 9
2.5.2. Deployment of React application.. 13

3. Project Deployment ... 15

4. GitLab CI/CD using Docker .. 17

4.1. GitLab CI Automatic Build Docker Image .. 17

4.1.1. Configure Gitlab ... 17
4.1.2. Test your solution by pushing an image to GitLab registry.................................... 20

4.2. GitLab CD Automatic Deploy Docker Image on Heroku.. 21

4.2.1. Configure Heroku locally ... 21
4.2.2. Configure Heroku on Gitlab ... 21

5. Further development ... 22
References ... 23

DISTRIBUTED SYSTEMS CI/CD Docker

3 | P a g e

1. Overview

From this tutorial you will learn how to configure the CI/CD pipeline in Gitlab for a spring-boot

application using Dockers. You can use the source code provided in [1] and [3] and setup your

own repository on Gitlab and following the instructions and the exercises from “Test your

solution”. The docker-configuration is found on the docker-production branch in the specified

repositories. By the end of the laboratory you should have your own backend and frontend

application configured to run both the CI and the CD pipeline using Dockers.

Figure 1. CI/CD Pipeline

With respect to the previous CI/CD setup established for the first assignment on the production

branch of the repositories, the docker-based CI/CD replaces the Build Phase and Deploy Phase

with docker instructions that will be exemplified in the following two chapters.

The Heroku cloud allows for the free account a 60 second boot time and 512MB memory. For

this reason, some extra measures are considered when configuring the Docker images in order to

improve the application startup resources consumption.

Gitlab- setup

repository

Configure .gitlab-ci.yml

setting CI/CD stages

Package

Docker Image

Stage

Test Stage
Codestyle

Stage

Deploy

Docker Image

Stage

In
it

ia
l

co
n
fi

g
u
ra

ti
o
n

Develop Commit and Push

D
ev

el
o
p

m
en

t
an

d

C
I/

C
D

 P
ro

ce
ss

 CI CD

DISTRIBUTED SYSTEMS CI/CD Docker

4 | P a g e

2. Docker
2.1. What is Docker? Why choosing Docker over VMs?

The Operating System divides the computer memory in several sections, where the Kernel space

and the User space are most important, as shown in Figure 2. The Kernel Space is the portion of

memory where privileged operating system kernel processes are executed, while the User Space

contains unprivileged processes. The separation is performed using a set of privileges. Programs

or processes are run in user mode and are sandboxed, meaning that they are isolated from other

processes from the memory point of view and cannot have complete access to the computer's

memory, disk storage, network hardware, and other resources.

Figure 2. Computer Memory privileges separation (Source [8]).

Starting with 1970, IBM and later other companies started developing special software called

Hypervisor, used to create and run Virtual Machines (VMs) [9]. A VM is an emulation of a

computer system, based on a computer architecture and providing the functionality of a physical

computer [15]. Several VMs with different hardware requirements and guest OSes can be run on

a host computer. Multiple instances of a variety of operating systems may share the virtualized

hardware resources: for example, Linux, Windows, and macOS instances can all run on a single

physical x86 machine. The hypervisor runs in Kernel mode, while the guest OS runs in user

mode, thus theoretically being sandboxed from the host OS.

As opposed to virtualization, Docker is a container-based technology where containers are running

as processes in the user space of the operating system. Docker originally used LinuX Containers

(LXC), but later switched to runC (formerly known as libcontainer), which runs in the same

operating system as its host. This allows it to share a lot of the host operating system resources. At

the low level, a container is just a set of processes that are isolated from the rest of the system,

running from a distinct image that provides all files necessary to support the processes. It is built

for running applications. In Docker, the containers running share the host OS kernel.

DISTRIBUTED SYSTEMS CI/CD Docker

5 | P a g e

Table 1. VM and Docker comparison [10,11,12]

Features VM Docker

Host OS Any Linux – based (if installed on

Windows it installs a VM with

Linux)

Guest OS Any Linux – based (it uses the

kernel of the host operating

system)

Sandboxing Full isolation Can access host through shared

filesystem (such as docker-

volume)

HW Resource requirements High (similar to the physical

machine emulated)

Low (many containers can run

on the same physical machine)

2.2. How to install Docker

Recommended to use Linux. Docker for Windows seems to create a VM with Linux on it, on

which it runs Docker, inside which it then runs containers. So much indirection might lead to

problems in the future (such as managing volumes). Furthermore, docker commands need

privileged access, using sudo command. Follow the tutorial here and install Docker CE [7]:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

2.3. Docker container lifecycle

Figure 3. Docker lifecycle and basic commands

https://docs.docker.com/install/linux/docker-ce/ubuntu/

DISTRIBUTED SYSTEMS CI/CD Docker

6 | P a g e

The first step would be to create an empty folder for each docker container you want to create.

This folder should contain at least 2 files, with exactly these names (since only these are

recognized by docker). The files will be detailed in the following sections.

• Dockerfile – the description of the image

• Docker-compose.yaml – the description of the container.

Docker REGISTRY
The Docker registry [13] is a server application that stores and distributes Docker images. Almost

all custom images that will be build are based on an existing image that already exists in the Docker

Registry [14]. Images can also build from scratch, without inheriting any parent image.

Create Docker Image
The Docker image is described by a Dockerfile. An image can be created either by inheriting a

parent image, or by creating a base image from scratch [14]:

• Inherit a parent image: the new image will customize an existing image (parent

image) from Docker Registry, by referencing it using the FROM directive at the

beginning of the Dockerfile. All the other instructions in the docker file modify the

parent image.

• Create a base image: a base image is created by using the FROM scratch directive at

the beginning of the Dockerfile.

Thus, a docker image can either be used directly from an online repository (e.g. the Docker

REGISTRY) or it can be customized starting from a parent image by describing it in a

Dockerfile and issuing the following command in the terminal:

#docker build –t <image-name>

An example for a Dockerfile for Nodejs server (downloaded from Docker REGISTRY)

customized for deploying an application is the following:

FROM node:8

WORKDIR /app

COPY package.json /app

RUN npm install

COPY . /app

CMD npm start

EXPOSE 3000

By issuing the docker build command, an image with the name <image-name> will be created.

At this stage, the image is stored locally and can be viewed using the command:

#docker image ls

Create Docker Volume
To create a docker volume you just have to run:

#docker volume create <vol_name>.

DISTRIBUTED SYSTEMS CI/CD Docker

7 | P a g e

The information from the volume will be stored at /var/lib/docker/volumes/<vol_name>/_data.

You can copy any files of interest directly here and they will appear in the container in the

specified folder (see Figure 4).

Figure 4. A docker container and communication with the host (port mapping and shared folders using volumes)

To see all available volumes, you can run docker volume ls. To remove a volume you can run

docker volume rm <vol_name>.

Configure Network
A virtual network can be created between the containers. Each network has a name and a IP

address. To create a network, the following command is used:

#docker network create <NET-NAME>

Create Container
There are 3 basic things that we want to synchronize between a docker container and the host:

• ports: map a container's port to a host's port (to be able to access the application from

outside)

• volumes: map a container's folder to a host's Docker volume (to be able to persist

information and do backups)

• environment vars: set the container's environment variables that can be used by the

application for various configurations

You can use docker-compose files to write the configurations you want for a docker container. A

docker-compose file MUST be named docker-compose.yaml, and for the syntax you can check

the existing ones or the internet.

DISTRIBUTED SYSTEMS CI/CD Docker

8 | P a g e

The docker-compose files for the most used images are already created, and you can find them in

Docker-compose Scripts folder at this location (mysql, cassandra, tomcat, gitlab).

In order to run/create a docker container you have to move this docker-compose.yaml file to the

desired computer, cd to its location and run:

 #docker-compose up –d

Make sure the appropriate docker volumes are created before running the above command (e.g.

tomcat volume for tomcat image, check the used volumes in each docker-compose file in

particular).

Containers created and started with this are started and stopped with the classic Docker

commands (start, stop, restart).

Check Running container and logs
The containers that are running can be checked with

#docker ps

The logs of a container can be accessed using

#docker logs –f <container-name>

Stop/Remove Container and Image
Containers and corresponding images can be stopped and removed using the following

commands (in this order):

#docker container stop <container-name>

#docker container rm <container-name>

#docker image rm <image-name>

Enter terminal of a container
One can enter the terminal of a container using the following command:

#docker exec –it <container-name> /bin/bash

Furthermore, using the instruction docker exec –it <container-name>, other commands to the

container can be appended.

2.4. Docker Commands Summary
Interogate running containers:

> docker ps

Interogate existing volumes:

> docker volume ls

Stop and Remove running containers:

> docker stop {name}

> docker rm {name}

DISTRIBUTED SYSTEMS CI/CD Docker

9 | P a g e

Remove existing volume:

> docker volume rm {volume-name}

Use docker-compose.yaml files, if the container needs a volume create it first with:

> docker volume create {volume-name}

Then start the docker container using:

> docker-compose up -d

Volumes location on host:

/var/lib/docker/volumes/

Access container bash:

docker exec -it [container-id] /bin/bash

2.5. DOCKER deploy example
In this section we will exemplify the deployment on Docker of the Spring demo application and

React application from tutorials for Assignment 1. The code can be downloaded from:

• Spring Application [1]: git clone https://gitlab.com/ds_20201/spring-demo.git

• React Application [3]: git clone https://gitlab.com/ds_20201/react-demo

We suppose the database connection to the PostgreSQL deployed on Heroku in the

previous laboratory session.

2.5.1. Deployment of Spring application
In order to be able to build a custom docker image containing your application’s executable code

a Dockerfile must be configured in the root directory of the project.

A Dockerfile and docker-compose.yml files are already available in the Spring demo if you switch

the branch to docker_production. Otherwise, create a new branch and create yourselves the files

specified in the laboratory work.

#git fetch -a

#git branch -a

#git checkout docker_production

The Dockerfile used for building the image for our application is presented in Figure 6.

Starting with line 1, an intermediate maven image called builder is configured. This is used in

order to build the executable of the application from the source code. Thus, firstly the source code

is copied in the temporary image (src, pom.xml and checkstyle.xml). Normally, a Spring Boot

application can be started using this .jar file. However, due to the boot resources limitation, we

https://gitlab.com/ds_20201/spring-demo.git
https://gitlab.com/ds_20201/react-demo

DISTRIBUTED SYSTEMS CI/CD Docker

10 | P a g e

have considered a more optimal approach, by using layered Jars. More details about the

Layered Jars and the reasons for using them can be found at [2].

1. In order to specify that a layered jar is required, firstly you need to modify lines 93-97

from pom.xml file, and add the following configuration, specifying that layers are

enabled.

Figure 5. Section from pom.xml of spring-demo

2. The mvn package is run (Figure 6 line 7) in order to obtain the application’s layered

.jar file from the source code.

3. The layers of the created .jar file are listed using command at line 8

4. The layers of the created .jar file are extracted using command at line 9

5. Lines 14-19 from the Dockerfile presented in Figure 6 contain the DB credentials from

the PostgreSQL deployed in Heroku in the previous laboratory session.

Figure 6 Dockerfile for Spring Boot Application

The steps to obtain the DB credentials are shown in the following figure and can be also found in

“CI/CD Tutorial and Deployment on cloud (Heroku Cloud)”. First, login in the Heroku cloud,

DISTRIBUTED SYSTEMS CI/CD Docker

11 | P a g e

access your spring-demo project, access the Resources section and the Configure Add-Ons. Select

the Heroku Postgres Add-on, go to Settings and Database Credentials, as shown in Figure 7.

Figure 7. Steps to obtain DB credentials.

The credentials for your database connection will be displayed. Replace them in lines 16-19 from

the Dockerfile shown in Figure 6 with the mapping from Figure 8.

Figure 8. Mapping for Environment variables from Dockerfile to Heroku interface

Starting with line 12, a JDK 11 image is used and the layers obtained in the previous temporary

image are copied in this image (lines 22, 23, 26, 27). Furthermore, the details for the DB

connections can be specified in the Dockerfile as environmental variables. In this way, the source

DISTRIBUTED SYSTEMS CI/CD Docker

12 | P a g e

code will not contain the connection details but will be able to read them from the Environmental

Variables set in the Dockerfile. This is possible by having the right configuration in your spring-

boot application.properties file. Each variable form the application.properties has a format of

${ENV_VAR_NAME: default_value} specifying that, if the ENV_VAR_NAME is found in the

local environmental variables, then that value is considered, otherwise the default value is

considered. On one hand, in the development mode (when the project is setup in your IDE) there

are no environmental variables set, so the default values are considered. On the other hand, when

the docker image is launched, the environmental variables are set (Figure 9 lines 15-19) so the

specified values are considered, and the default ones are ignored.

Figure 9. Application Properties section from spring-demo

Line 28 from the Dockerfile from Figure 6, specifies the command with which the newly created

image should be launched. As noticed, there are several options set in order to optimize the

resources consumption during boot time.

Remember to set the spring.jpa.hibernate.ddl-auto property to create/validate/update

according to your database structure and contents.

2.5.1.1. Test your solution
Before continuing your configuration on the Gitlab repository, make sure that your Dockerfile

written by you is correct and that the obtained image can run successfully.

For this follow the instructions:

1. Create a docker-compose.yml file in the root of your project, containing the following

lines. The name of the image must correspond to the name given as argument to the build

command from step 2 (i.e. “your_image_name”)

Figure 10. Docker-compose file of spring-demo image

2. Build your image using:

• docker build -t your_image_name .

3. Start your image:

• docker-compose up -d

DISTRIBUTED SYSTEMS CI/CD Docker

13 | P a g e

4. Access your deployed application at http://localhost:8080. Furthermore, other endpoints

of the application should be accessible, such as http://localhost:8080/person, returning

the list of persons stored in the DB.

If everything is successful, you can push your newly created files on your repository (create a

new branch like the example given docker_production branch) and proceed with the Gitlab

configuration.

2.5.2. Deployment of React application
For the Frontend application, the same principles apply when setting the CI/CD pipeline. At

[3] you can find a React application configured to be built and deployed on Heroku using

dockers. The docker based CI/CD is configured on the docker_production branch.

 Observations:

• Check the Dockerfile exposed on the docker_production branch:

Figure 11. Dockerfile for docker production branch

Same approach is used as for the Maven project. In the first stage the application is built in

an intermediate node image, while the built results are copied in the final nginx image. The

Envsubst plugin is installed in order to make possible the parametrization of the nginx

scripts with Environmental Variables. More details about this at [6].

• A nginx.conf file must be added in the root directory in order to specify the configuration

for the nginx server. Here the port of the server is passed as an environmental variable by

the Heroku cloud (line 2).

http://localhost:8080/person

DISTRIBUTED SYSTEMS CI/CD Docker

14 | P a g e

Figure 12. nginx.conf configuration file

2.5.2.1. Test your solution
Before continuing your configuration on the Gitlab repository, make sure that the Dockerfile

written by you is correct and that the obtained image can run successfully.

For this follow the instructions:

1. Create a docker-compose.yml file in the root of your project, containing the following

lines. The name of the image must correspond to the name given as argument to the build

command from step 2 (i.e. “fe-image”)

Figure 13. Docker-compose configuration file for React app

2. Build your image using:

• docker build -t fe-image .

3. Start your image:

• docker-compose up -d

4. Access your deployed application at http://localhost

If everything is successful, you can push your newly created files on your repository (create a new

branch like the example given docker_production branch) and proceed with the Gitlab

configuration.

DISTRIBUTED SYSTEMS CI/CD Docker

15 | P a g e

3. Project Deployment

The goal of this tutorial is to deploy the software stack in Docker containers, to handle the

heterogeneity of the platforms and to ease the migration to the Heroku platform.

Figure 14. Project Deployment Diagram

Each module of the application, namely the database server and the backend server will be

deployed in Docker containers that will be hosted on the Heroku cloud, thus eliminating the need

of custom scripts used for application deployment in the previous laboratory tutorial “CI/CD

Tutorial and Deployment on cloud (Heroku Cloud)”. The database is deployed in an instance of

PostgreSQL server as shown in the previous laboratory work.

DISTRIBUTED SYSTEMS CI/CD Docker

16 | P a g e

Figure 15. Project Deployment Pipeline

The steps that are involved in deploying the application on the Heroku cloud are depicted in

Figure 15 and described in Table 2:

Table 2. Project Deployment Pipeline Steps

Step Description Detailed in section

P1 Develop code locally. Push on development branch

while adding new features.

Previous laboratory

work: “CI/CD

Tutorial and

Deployment on

cloud”

P2 When a stable version is reached, merge the

development branch with the production branch and

push the code.

T1

(OPTIONAL)

Test that the solution runs without problems on a local

test environment. Initially deploy on web servers, then

deploy on local Docker containers.

Section 2.5.

T2

(OPTIONAL)

Test the connection with the Heroku registry. Push the

image to Heroku registry and then perform a manual

deploy on Heroku.

Section 4.2.1.

B1 Build the image from the code pushed and built on one

of the branches from GitLab.

Section 4.1.1.

B2 Tag the built image

B3 Push the image on GitLab registry

D1 Login to GitLab registry and get the latest image from

the production branch (other images may exist from

building the development branch).

Section 4.2.2. D2 Tag the latest image

D3 Login and push the image to the Heroku registry

D4 Trigger the automatic deploy of the image on Heroku

cloud

DISTRIBUTED SYSTEMS CI/CD Docker

17 | P a g e

4. GitLab CI/CD using Docker
This section covers the steps needed to deploy the Spring-demo app in Docker containers on the

Heroku cloud:

➢ The first part of this section covers the setup to automate the process of creating images

by the CI pipeline from GitLab and save them in GitLab Registry.

➢ The second part of this section covers the setup to push the images to Heroku cloud by

moving them to Heroku registry and them triggering a deploy.

4.1. GitLab CI Automatic Build Docker Image
Consider the following setup on your docker_production branch. Set your branch as protected

by going on GitLab to Settings → Repository → Protected Branches.

4.1.1. Configure Gitlab

In your repository, go to Settings → CI/CD → Variables and add the following 2 variables:

• Key: CI_REGISTRY Value: registry.gitlab.com

• Key: CI_REGISTRY_IMAGE Value: registry.gitlab.com/group_id/repo_id

!!! For the Value required for CI_REGISTRY_IMAGE, please go to

Packages and Registries → Container Registry and copy the image name provided in the

initialization scripts by Gitlab.

DISTRIBUTED SYSTEMS CI/CD Docker

18 | P a g e

Figure 16. GitLab Container Registry

In your repository, go to Settings → Repository → Deploy token and add the following token:

DISTRIBUTED SYSTEMS CI/CD Docker

19 | P a g e

Figure 17. GitLab Deploy Token

Observations:

• !!! for the name field make sure you provide: gitlab-deploy-token

Figure 18 Gitlab Documentation [5]

• Check all the scopes as shown in Figure 17

• Make sure you save your credentials provided as a result. These credentials can be used to

access the Gitlab registry locally from your computer as well.

Figure 19. Credentials to access GitLab Docker Registry example

DISTRIBUTED SYSTEMS CI/CD Docker

20 | P a g e

On your docker_production branch modify the .gitlab-ci.yml build phase to :

Figure 20 Build phase using Docker

During the build stage presented in Figure 20:

1. Firstly, the authentication step will be run (line 11) and will use the credentials associated

automatically to the gitlab-deploy-token previously created, to login to the Gitlab

Registry.

2. At line 12 the latest imaged that has been build is pulled from the registry (considering

the name of the image provided for the Variable CI_REGISTRY_IMAGE).

3. The pulled image (if any) will be considered as cache resource for the current build (line

13) and the current build is tagged with latest and tagged with the COMMIT_SHA.

4. The latest image is pushed in the Gitlab registry considering the 2 tags.

4.1.2. Test your solution by pushing an image to GitLab registry

• Comment the deploy stage from the .gitlab-ci. It will be updated accordingly in Section

4.2.

• Make a change in the code, commit it, and push it on your docker_production branch in

order to trigger and test your build phase.

• On success, go to Settings → Packages and Registries → Container Registry and your

image should be registered in the Image Repository with the two tags.

DISTRIBUTED SYSTEMS CI/CD Docker

21 | P a g e

4.2. GitLab CD Automatic Deploy Docker Image on Heroku
The Heroku deployment can be configured and run from both the local computer and from Gitlab.

In order to avoid configuration problems, we recommend firstly deploying the application on

Heroku from your local computer (section 4.2.1.), and when successful continue to setup the

Gitlab CD stage (section 4.2.2.).

Regarding the docker files, keep in mind that Heroku will automatically launch the image created

based on your Dockerfile, however the docker-compose file is NOT considered by Heroku, but it

serves for your local tests. Thus, please do not rely on any configuration inside the docker-

compose file when deploying on Heroku.

4.2.1. Configure Heroku locally
1. Install Heroku CLI on your computer [4]

2. Make sure you have docker installed on your computer.

3. Check your application.properties file from your spring boot application, and make sure

you have your server.port exposed and set to : server.port=${PORT:8080}. The PORT

variable is set by the Heroku runtime and incoming requests are forwarded to your

application on this port.

4. In your project’s root directory run:

> heroku login
> heroku container:login

 > heroku config:set JAVA_TOOL_OPTIONS="-Xmx512m" --app spring-demo-ds2020
> heroku container:push --app spring-demo-ds2020 web
> heroku container:release --app spring-demo-ds2020 web
> heroku logs --tail --app spring-demo-ds2020

Observation: make sure you use the application name set by you in the previous tutorial on
heroku.

* For UBUNTU: In case of error regarding the login credentials on heroku container:login
consider running the following cmds: sudo apt install gnupg2 pass and sudo docker login

4.2.1.1. Test your solution locally

• Verify the logs of the application deployment using:
 > heroku logs --tail --app spring-demo-ds2020

• If successful, go to the Heroku Application page and open the Spring Boot application

and check if it is up and running and retrieves data.

• If everything works ok, you can proceed and make the deployment step automatically

using Gitlab CD.

4.2.2. Configure Heroku on Gitlab

In your repository, go to Settings → CI/CD → Variables and add the following 2 variables:

• Key: HEROKU_REGISTRY

 Value: registry.heroku.com

• Key: HEROKU_REGISTRY_IMAGE

 Value: registry.heroku.com/spring-demo-ds2020/web

DISTRIBUTED SYSTEMS CI/CD Docker

22 | P a g e

Observation: make sure you use the application name set by you in the previous tutorial on
heroku.

Add the deploy stage to your .gitlab-ci file, making sure that you set the restrictions for only

the current branch, the docker_production branch.

During the deploy stage presented in Figure 21:

1. Firstly, the authentication Gitlab step will be run (line 48) to connect to the Gitlab

registry

2. At line 49 the latest imaged that has been build is pulled from the registry

(considering the name of the image provided for the Variable

CI_REGISTRY_IMAGE).

3. The pulled image is tagged with the name required by the Heroku Registry (line 50).

4. The Heroku authentication step will be run (line 51) that will use the

HEROKU_API_KEY set in the previous tutorial in Gitlab, and connect to the Heroku

registry

5. The tagged image is pushed in the Heroku registry considering (line 52).

6. The imaged is released -line 53 (launched on the Heroku platform corresponding to

the application set on Heroku – line 38)

Figure 21 Deploy Phase using Docker

4.2.2.1. Test your solution on Gitlab

• Make a modification in your code, commit it and push it to the docker_production

branch in order to trigger the pipeline and the deploy stage

• Check if the pipeline runs successful and on success validate that the application is

successfully launched by Heroku.

• If the application launch fails, you can verify the logs of the application deployment on

your local computer using:
 > heroku logs --tail --app spring-demo-ds2020

5. Further development
➢ Apply the configuration from section 4 to deploy the React Application on Heroku.

➢ Modify the host.js file by referencing the public IP address of the Spring App container.

➢ Deploy the application resulted from Assignment 1 on Heroku cloud.

DISTRIBUTED SYSTEMS CI/CD Docker

23 | P a g e

References

[1] https://gitlab.com/ds_20201/spring-demo

[2] https://www.baeldung.com/spring-boot-docker-images

[3] https://gitlab.com/ds_20201/react-demo

[4] https://devcenter.heroku.com/articles/heroku-cli#download-and-install

[5] https://docs.gitlab.com/ee/user/project/deploy_tokens/

[6] https://developer.okta.com/blog/2020/06/24/heroku-docker-react

[7] https://docs.docker.com/install/linux/docker-ce/ubuntu/

[8] https://www.computerhope.com/jargon/u/user-space.htm

[9] https://en.wikipedia.org/wiki/Hypervisor

[10] https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/

[11] https://www.docker.com/blog/vm-or-containers/

[12] https://www.sciencedirect.com/topics/computer-science/hypervisors

[13] https://docs.docker.com/registry/

[14] https://docs.docker.com/develop/develop-images/baseimages/

[15] https://en.wikipedia.org/wiki/Virtual_machine

https://gitlab.com/ds_20201/spring-demo
https://www.baeldung.com/spring-boot-docker-images
https://gitlab.com/ds_20201/react-demo
https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://docs.gitlab.com/ee/user/project/deploy_tokens/
https://developer.okta.com/blog/2020/06/24/heroku-docker-react
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/
https://www.docker.com/blog/vm-or-containers/
https://www.sciencedirect.com/topics/computer-science/hypervisors
https://docs.docker.com/registry/
https://docs.docker.com/develop/develop-images/baseimages/

