

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

1 | P a g e

DISTRIBUTED SYSTEMS

CI/CD Tutorial and

Deployment on cloud

(Heroku Cloud)

Ioan Salomie Tudor Cioara Marcel Antal

 Claudia Antal

22023-2024

DISTRIBUTED SYSTEMS CI/CD

2 | P a g e

Contents
1. Overview ... 3
2. Continuous Integration (CI) - Backend ... 4

2.1. Setting the gitlab-ci file .. 4

2.1.1. Setting the Build phase ... 5
2.1.2. Setting the Testing phase .. 6

2.1.3. Setting the Check style phase ... 7

2.2. Test your solution ... 8

3. Continuous Deployment (CD) – Backend ... 9

3.1. Setting the Application on Heroku ... 9

3.2. Setting the Continuous Deployment phase on Gitlab .. 10

3.2.1. Test your solution ... 12

3.3. Setting the Database on Heroku (Postgres) .. 12

3.3.1. Test your solution: .. 14

4. CI/CD – Frontend .. 15

4.1. Test your solution: .. 15

References ... 15

DISTRIBUTED SYSTEMS CI/CD

3 | P a g e

1. Overview

From this tutorial you will learn how to configure the CI/CD pipeline in Gitlab for a spring-boot

application. You can use the source code provided in [1] and [2] and setup your own repository on

Gitlab and following the instructions and the exercises from “Test your solution”. By the end of

the laboratory you should have your own backend and frontend application configured to run both

the CI and CD pipeline.

For setting your Gitlab repositories:

1. First setup a Gitlab Group by going to: Groups →Your Groups → New Group and create

your private group for the DS project as:

DS2020_GroupNumber_LastName_FirstName

(e.g. DS2020_30441_Popescu_Ioan)

2. Give access to your group for the DS lab assistants. On your Group page go to:

Members → Invite Member →

and offer Maintainer rights for the user: utcn.dsrl@gmail.com

3. Inside the group, you can create your own projects for different applications of the DS lab.

Make sure you keep the naming conventions for the projects as well, considering one of

the following formats:

• DS2020_GroupNumber_LastName_FirstName_AssigNumber

• DS2020_GroupNumber_LastName_FirstName_AssigNumber_Backend

• DS2020_GroupNumber_LastName_FirstName_AssigNumber_Frontend

Gitlab- setup

repository

Configure .gitlab-ci.yml

setting CI/CD stages

Build Stage Test Stage Codestyle Stage Deploy Stage

In
it

ia
l

co
n
fi

g
u
ra

ti
o
n

Develop Commit and Push

D
ev

el
o
p
m

en
t

an
d

C
I/

C
D

 P
ro

ce
ss

CI CD

DISTRIBUTED SYSTEMS CI/CD

4 | P a g e

2. Continuous Integration (CI) - Backend

Continuous Integration (CI) refers to a pipeline of steps that are applied whenever your code is

pushed on the code repository. It aims to validate that the code you developed does not affect the

previously developed features and that the integration between your newly developed code and the

previous code is done correctly. Specifically, this can be done in 3 steps:

1. Verify that the project builds correctly

2. Verify that the tests run and are successful

3. Verify that there are no major code style issues

In the following sections each of these verification steps will be addressed.

*) Additional information and the source code for this tutorial can be find at [1]

Exercise: You can download the source code from [1] and upload it in your own Gitlab

repository or push your own Spring Boot source code online.

2.1. Setting the gitlab-ci file

In order to trigger the pipeline of continuous integration on Gitlab, it is necessary to add a .gitlab-

ci.yml configuration file, where you need to specify all the pipeline steps together with the

commands and configurations necessary to successfully run that step.

The .gitlab-ci.yml need to be registered in the root of the project as depicted in Figure 1.

Figure 1 Project structure for setting CI on Gitlab

In order to validate that the CI/CD configuration is possible, make sure that you have the

Runners enabled for your project.

For this go to: Settings → CI/CD → Runners

DISTRIBUTED SYSTEMS CI/CD

5 | P a g e

Figure 2 Check Runners are enabled

By default the runners are enabled, thus you do not have to do anything.

In the .gitlab-ci.yml file we configure the 3 stages (Figure 3) required to be run whenever new

code is pushed in the repository:

Figure 3 CI Pipeline stages

2.1.1. Setting the Build phase

During the build phase, the build command is issued on the source code that has been updated:

Figure 4 Build Stage

DISTRIBUTED SYSTEMS CI/CD

6 | P a g e

Having a Spring Boot application configured using Maven, in order to build our code we need to

specify that this stage needs to be executed on an image preconfigured with Maven.

Furthermore, using the script tag, the command needs to be given that will be executed for this

stage.

Exercise: You may change the command and specify mvn clean install

2.1.2. Setting the Testing phase
During the test stage, all the tests are expected to be run in order to detect any possible problems

that may have raised as a result of updating the code.

Figure 5 Test Stage

Similarly to the build stage, we start from a maven image, however, the script tag contains the

maven command for executing the tests.

Additionally, the jacoco plugin is used (check the project’s pom.xml lines 94-151) in order to

generate the test reports. This is useful in order to extract useful information about the testing

phase, such as the test coverage (the percentage of lines of code covered by tests).

As a result the test coverage is depicted in the test stage details. In order to see the test details:

Select CI/CD → Pipelines → Select and Click the Test phase from the Pipeline → Test

Coverage is depicted on the right side of the screen (Figure 7)

Figure 6 Test Stage Selection

DISTRIBUTED SYSTEMS CI/CD

7 | P a g e

Figure 7 Test Stage Report

2.1.3. Setting the Check style phase

During the check style phase (or the linting phase) the code is evaluated in order to detect

possible coding style errors or warnings. These errors can be signs of suspicious constructs that

can lead to future programming errors.

Figure 8 Checkstyle Stage

For the current pipeline the checkstyle plugin is used (see the project’s pom.xml [1]). The plugin

relies on a configuration file (checkstyle.xml – see the project structure [1]) that specifies which

coding errors / warning to be investigated when the linter is applied. For official configurations,

check the ‘Google Java Style’ xml at [3].

Whenever the check phase encounters an error in your coding style, the check style phase will fail.

DISTRIBUTED SYSTEMS CI/CD

8 | P a g e

2.2. Test your solution

By this point your .gitlab-ci.yml should look like this:

Figure 9 CI setup

Make a modification on your code, locally and then push it to your Gitlab account.

• Check the CI/CD pipelines and make sure that the pipeline is triggered once your code is

loaded on git.

• If the pipeline fails, make sure you make the necessary adjustments in your code/

configuration.

• Make sure you identify all the details regarding the configuration (e.g. the test coverage is

displayed)

• Once your pipeline succeeds proceed to the next point regarding Continuous Deployment.

DISTRIBUTED SYSTEMS CI/CD

9 | P a g e

3. Continuous Deployment (CD) – Backend

The continuous deployment aims at delivering as fast as possible the new features added through

your code to the deployment servers. This can be configured also as a stage in the .gitlab-ci.yml

file, such that if all the previous steps (build, test, and checkstyle) are successful, it may proceed

with the deployment of your application on a server. In order to avoid unnecessary deployments,

it is recommended to configure the deployment stage such that to be run only for specific branches,

when the feature you are working on is completed, and ready to be delivered to the end-user. More

details about this will be covered in section 3.2.

3.1. Setting the Application on Heroku

In order to be able to deploy your application, a server instance or a cloud account is required.

For this setup, we chose to use the Heroku cloud.

You can create your own account on Heroku for free: https://signup.heroku.com/

Figure 10 Heroku Free account

Upon registration you will be able to create a New Application. We named our application:

“spring-demo-ds2020”. For your application, make sure you provide a unique name, that does not

already exist.

Then from your Profile, Account Settings → API key → click reveal and copy the content of your

API key.

Figure 11 Heroku API key

https://signup.heroku.com/

DISTRIBUTED SYSTEMS CI/CD

10 | P a g e

3.2. Setting the Continuous Deployment phase on Gitlab

The API key needs to be added in the Gitlab’s project configuration, in order to be granted

access when deploying the application.

For this go to: Settings → CI/CD → Variables → Add Variable

Figure 12 Setup API key in Gitlab

Add the HEROKU_API_KEY variable and paste the API Key that you copied in section 2.1.

from Heroku.

Figure 13 Gitlab Variable for Heroku API ley

DISTRIBUTED SYSTEMS CI/CD

11 | P a g e

Now you can add the deployment stage to your .gitlab-ci.yml file. So the final version of your

.gitlab-ci.yml should look like Figure 14, considering for the --app flag, the name you have

provided for the Heroku application.

Figure 14 FINAL CI/CD configuration

For this setup, we used ruby gems to deploy our spring-boot application on Heroku. As marked in

Figure 14, you need to specify the name of your application created in Heroku, and reference the

API key variable previously added in Gitlab. Furthermore, you can configure your deployment

stage to run only when modifications appear on the specified branches.

DISTRIBUTED SYSTEMS CI/CD

12 | P a g e

3.2.1. Test your solution

 Make a modification on your code, locally and then push it to the Gitlab.

• Check the CI/CD pipelines and make sure that the Gitlab can connect to the Heroku

application

• The deployment should be successful, although your spring-boot application will fail to

start since it cannot connect yet to a database on the Heroku cloud.

• Make a protected production branch and make sure that it runs the deployment only when

you merge your developed features in the production branch.

Configuring protected branches

1. Navigate to your project's Settings ➔ Repository.

2. Scroll to find the Protected branches section.

3. From the Branch dropdown menu, select the branch you want to protect and click

Protect. ...

4. Once done, the protected branch will appear in the “Protected branches” list.

3.3. Setting the Database on Heroku (Postgres)

On your application page in Heroku go to Overview and then select Configure Add-ons.

Search the Heroku Postgres Add-on (there are other add-ons for databases as well, make sure you

chose a free one) and click Provision.

DISTRIBUTED SYSTEMS CI/CD

13 | P a g e

Figure 15 Add database add-on

Under the Overview tag from your application, the Postgres add-on should appear.

Figure 16 Installed Add ons for application

By selecting your Postgres add-on you will be redirected to the Datastores page, where you can

see the details about the Database credentials and other connection information.

DISTRIBUTED SYSTEMS CI/CD

14 | P a g e

Figure 17 Database information

OBSERVATION! Based on the Database credentials obtained from the Heroku Administration

page, update the .gitlab-ci by modifying the marked Environmental Variables from Figure 18.

Figure 18 DB Credentials

3.3.1. Test your solution:

• Using the connection details, you can update your application.properties file from your

spring boot application to connect to the cloud database you have just created and test it

from your IDE locally.

• Trigger the online pipeline on the production branch and check if successful

• From the Heroku page, click on the Open App button and you should be redirected to the

index of your application deployed on cloud.

IMPORTANT! During the development phase use a local database, since the database created in

the Heroku platform has a limited usage plan. Whenever you consider that a feature is completed,

switch to your production branch.

DISTRIBUTED SYSTEMS CI/CD

15 | P a g e

4. CI/CD – Frontend

For the Frontend application, the same principles apply when setting the CI/CD pipeline. At [2]

you can find a React application configured to be built and deployed on Heroku.

4.1. Test your solution:
• Configure your own frontend application and supply the necessary connection details

(hostname in hosts.js) so that the frontend application can connect to your backend

application.

References

[1] https://gitlab.com/ds_20201/spring-demo

[2] https://gitlab.com/ds_20201/react-demo

[3] https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

https://gitlab.com/ds_20201/spring-demo
https://gitlab.com/ds_20201/react-demo
https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

