MINISTRY OF EDUCATION AND SCIENTIFIC RESEARCH

CCCCCCCCCCC

FACULTY OF AUTOMATION AND COMPUTER SCIENCE
COMPUTER SCIENCE DEPARTMENT

DISTRIBUTED SYSTEMS

CI1/CD Tutorial and
Deployment on cloud
(Heroku Cloud)

loan Salomie Tudor Cioara Marcel Antal
Claudia Antal

2023-2024

1|Page

DISTRIBUTED SYSTEMS CI/CD

Contents
I O 1V VT PSPPSR 3
2. Continuous Integration (CI) - BaCKENdcceiiieiiiiieiie e 4
2.1, Setting the gitlab-Ci file........ccoooiiie e 4
2.1.1. Setting the BUIld Phasecooiiiiiiie e 5
2.1.2. Setting the TeStING PNASEccveieeiice e 6
2.1.3. Setting the Check Style Phasecoeiieiiiiiie e 7
A - Yo 1U T o] 111 To] o SO 8
3. Continuous Deployment (CD) — BaCKENd...........cccoiiiiiieiiee e 9
3.1, Setting the Application 0N HEIOKU...........coeiiiiiiiiiiiecee e 9
3.2. Setting the Continuous Deployment phase on Gitlabc.ccccoveviiiviiciciece e, 10
3.2. 1. TeStYOUN SOIUTION ..veiuiiiiiici e 12
3.3. Setting the Database on HEroku (POSIGIES)........cccouerurririeriiiniiiisieieeee e 12
3.3.1. TeSt YOUN SOIULION: ..c.vieeiiciiecie et 14
N O 1 (@1 B I 111 (-] o SR 15
4.1, TeStYOUN SOIULION:ottt 15
RS (= =T [o0 SRS 15

2|Page

Initial
configuration

Development and

CI/CD Process

DISTRIBUTED SYSTEMS CI/CD

1. Overview

From this tutorial you will learn how to configure the CI/CD pipeline in Gitlab for a spring-boot
application. You can use the source code provided in [1] and [2] and setup your own repository on
Gitlab and following the instructions and the exercises from “Test your solution”. By the end of
the laboratory you should have your own backend and frontend application configured to run both
the Cl and CD pipeline.

/[]
\
/s >
Cl CD
9 Commit and Push Build Stage Codestyle Stage Deploy Stage
&

For setting your Gitlab repositories:

1. First setup a Gitlab Group by going to: Groups —Your Groups — New Group and create
your private group for the DS project as:
DS2020_GroupNumber_LastName_FirstName
(e.g. DS2020_30441_Popescu_loan)
2. Give access to your group for the DS lab assistants. On your Group page go to:
Members — Invite Member —
and offer Maintainer rights for the user: utcn.dsri@gmail.com
3. Inside the group, you can create your own projects for different applications of the DS lab.
Make sure you keep the naming conventions for the projects as well, considering one of
the following formats:
e DS2020 GroupNumber_LastName_FirstName_AssigNumber
e DS2020 GroupNumber_LastName_FirstName_AssigNumber_Backend
e DS2020_GroupNumber_LastName_FirstName_AssigNumber_Frontend

3|Page

DISTRIBUTED SYSTEMS CI/CD

2. Continuous Integration (Cl) - Backend

Continuous Integration (CI) refers to a pipeline of steps that are applied whenever your code is
pushed on the code repository. It aims to validate that the code you developed does not affect the
previously developed features and that the integration between your newly developed code and the
previous code is done correctly. Specifically, this can be done in 3 steps:

1. Verify that the project builds correctly
2. Verify that the tests run and are successful
3. Verify that there are no major code style issues

In the following sections each of these verification steps will be addressed.

*) Additional information and the source code for this tutorial can be find at [1]

Exercise:

2.1. Setting the gitlab-ci file
In order to trigger the pipeline of continuous integration on Gitlab, it is necessary to add a .gitlab-
ci.yml configuration file, where you need to specify all the pipeline steps together with the
commands and configurations necessary to successfully run that step.

The .gitlab-ci.yml need to be registered in the root of the project as depicted in Figure 1.

Name Last commit Last update
& src jacoco and checkstyle enabled 2 days ago
¥ .gitignore initial commit 3 days age
& .gitlab-ci.yml Update .gitlab-ci.yml 2 days age
M+ README.md Initial commit 4 days ago

checkstyle.xml configure jaccoco and checkstyle 3 days age

pom.xml jacoco and checkstyle enabled 2 days ago

Figure 1 Project structure for setting Cl on Gitlab

In order to validate that the CI/CD configuration is possible, make sure that you have the
Runners enabled for your project.
For this go to: Settings — CI/CD — Runners

4|Page

DISTRIBUTED SYSTEMS

CI/CD

S spring-demo

1Y Project overview

B Repository

[Issues [

14 Merge Requests 0

2 Cl/CD

@ Security & Compliance

& Operations

(® Packages & Registries

b Analytics

M wiki

o6 Snippets

88 Members

£} Settings (1)
General
Integrations.
Webhooks

Repository

c1/co (2)

Runners (3)

Runiners are processes that pick up and execute jobs for GitLab. Here you can register and see your Runners for this project, Mare

information

You can set up as many Runners as you need to run your jobs.

Runners can be placed on separate users, servers, and even on your local machine.

Each Runner can be in one of the following states:

. - Runner s active and can process any new jobs
. - Runner is paused and will not receive any new jobs

To start serving your jobs you can either add specific Runners to your project or use shared Runners

Specific Runners

Set up a specific Runner automatically

You can easily install a Runner on a Kubernetes cluster.
Learn more about Kubernetes

1. Click the button below to begin the install process by
navigating to the Kubernetes page

2. Select an existing Kubernetes cluster or create a new
one

3. From the Kubernetes cluster details view, install
Runner from the applications list

Install Runner on Kubernetes

Set up a specific Runner manually

1. Install GitLab Runner
2. Specify the following URL during the Runner setup:

Shared Runners

Shared Runners on GitLab.com run in autoscale mode and
are powered by Google Cloud Platform. Autoscaling means
recuced wait times to spin up builds, and isolated VMs for
each project, thus maximizing security.

They're free to use for public open source projects and
limited to 2000 CI minutes per month per group for private
projects. Read about all GitLab.com plans.

Disable shared Runners | for this project

Available shared Runners: 15

@ 1d6b581d

gitlab-shared-runners-manager-3.gitlab.com 157328

Collapse

Figure 2 Check Runners are enabled

By default the runners are enabled, thus you do not have to do anything.

In the .gitlab-ci.yml file we configure the 3 stages (Figure 3) required to be run whenever new
code is pushed in the repository:

- Checkstyle

Figure 3 CI Pipeline stages

2.1.1. Setting the Build phase

During the build phase, the build command is issued on the source code that has been updated:

build:
stage: build
image: maven:3.3.9-jdk-8
script:

- mvn clean package

Figure 4 Build Stage

5|Page

DISTRIBUTED SYSTEMS CI/CD

Having a Spring Boot application configured using Maven, in order to build our code we need to
specify that this stage needs to be executed on an image preconfigured with Maven.

Furthermore, using the script tag, the command needs to be given that will be executed for this
stage.

Exercise: mvn clean install

2.1.2. Setting the Testing phase
During the test stage, all the tests are expected to be run in order to detect any possible problems
that may have raised as a result of updating the code.

test:

-
=

- echo "Test DEMO app"
- mvn test && mwvn jacoco:report

%]

- cat target/site/jacoco/index.html | grep -

coverage: "J/Total.*?({[@-2]{1,3})&/"

Figure 5 Test Stage

Similarly to the build stage, we start from a maven image, however, the script tag contains the
maven command for executing the tests.

Additionally, the jacoco plugin is used (check the project’s pom.xml lines 94-151) in order to
generate the test reports. This is useful in order to extract useful information about the testing
phase, such as the test coverage (the percentage of lines of code covered by tests).

As a result the test coverage is depicted in the test stage details. In order to see the test details:

Select CI/CD — Pipelines — Select and Click the Test phase from the Pipeline — Test
Coverage is depicted on the right side of the screen (Figure 7)

o Project overview DS5_2020 > spring-demo Pipelines
B Repository All 21 Finished Branches Tags
O lssues 0 Filter pipelines
11 Merge Requests 0
Status Pipeline Triggerer Commit
o Cl/cD (1) & o
#189661785 T ¥ master -o- 39036347 —~ Ny
Pipelines (w) (v)(v)
i # & Update gitlab-ciyml = N
Jobs
C s master -0 7b7663c —
Schedules #189659518 E:3 ke]
g & Update gitlab-ciyml N

Figure 6 Test Stage Selection

6|Page

DISTRIBUTED SYSTEMS

CI/CD

test

Duration: 1 minute 49 s2conds
Timeout: 1h (from project)

Runner: shared-runners-manager-
4.gitlab.com (#44949)

overage: 53%

Job artifacts

These artifacts are the latest. They will
not be deleted (even if expired) until

@

newer artifacts are available.

Commit 7b7e662c [j

Update .gitlab-ci.yml

(+) Pipeline #189659518 for master

test

Figure 7 Test Stage Report

2.1.3. Setting the Check style phase

During the check style phase (or the linting phase) the code is evaluated in order to detect
possible coding style errors or warnings. These errors can be signs of suspicious constructs that
can lead to future programming errors.

checkstyle
stage: checkstyle
image: maven:3.3.9-jdk-8
script:
- echo "Checkstyle DEMO app"
- mvn checkstyle:check

Figure 8 Checkstyle Stage

For the current pipeline the checkstyle plugin is used (see the project’s pom.xml [1]). The plugin
relies on a configuration file (checkstyle.xml — see the project structure [1]) that specifies which
coding errors / warning to be investigated when the linter is applied. For official configurations,
check the ‘Google Java Style’ xml at [3].
Whenever the check phase encounters an error in your coding style, the check style phase will fail.

7|Page

DISTRIBUTED SYSTEMS CI/CD

2.2. Testyour solution

By this point your .gitlab-ci.yml should look like this:

3 .gitlab-ci.yml 22522 [}

1 stages:

2 - build

3 - test

4 - checkstyle

build:
stage: build
image: maven:3.3.9-jdk-38

script:
18 - mvn clean package
11
12 test:
13 stage: test
14 image: maven:3.3.9-jdk-8
1% script:
15 - echo "Test DEMO app"
17 - mvn test & mvn jacoco:report
12 - cat target/site/jacoco/index.html | grep -o '.¥'
13 coverage: "/Total.*?([@-9]1{1,3})%/"

2z checkstyle:

23 stage: checkstyle

24 image: maven:3.3.%-Jjdk-8

25 script:

26 - echo "Checkstyle DEMO app”
27 - mvn checkstyle:check

Figure 9 CI setup

Make a modification on your code, locally and then push it to your Gitlab account.

e Check the CI/CD pipelines and make sure that the pipeline is triggered once your code is
loaded on git.

e If the pipeline fails, make sure you make the necessary adjustments in your code/
configuration.

e Make sure you identify all the details regarding the configuration (e.g. the test coverage is
displayed)

e Once your pipeline succeeds proceed to the next point regarding Continuous Deployment.

8|Page

DISTRIBUTED SYSTEMS CI/CD

3. Continuous Deployment (CD) — Backend

The continuous deployment aims at delivering as fast as possible the new features added through
your code to the deployment servers. This can be configured also as a stage in the .gitlab-ci.yml
file, such that if all the previous steps (build, test, and checkstyle) are successful, it may proceed
with the deployment of your application on a server. In order to avoid unnecessary deployments,
it is recommended to configure the deployment stage such that to be run only for specific branches,
when the feature you are working on is completed, and ready to be delivered to the end-user. More
details about this will be covered in section 3.2.

3.1. Setting the Application on Heroku

In order to be able to deploy your application, a server instance or a cloud account is required.
For this setup, we chose to use the Heroku cloud.

You can create your own account on Heroku for free: https://signup.heroku.com/

Sign up for free and

experience Heroku today

@ Free account First name

Create apps. connect databases and add-on
services, and collaborate on your apps, for free.

@ Your app platform

A platform for apps, with app management &
instant scaling, for development and production

@ Deploy now

Go from code to running app in minutes. Deploy
scale, and deliver your app to the world

Figure 10 Heroku Free account

Upon registration you will be able to create a New Application. We named our application:
“spring-demo-ds2020”. For your application, make sure you provide a unique name, that does not
already exist.

Then from your Profile, Account Settings — AP key — click reveal and copy the content of your
API key.

API Key | Reveal ‘

Figure 11 Heroku API key

9|Page

https://signup.heroku.com/

DISTRIBUTED SYSTEMS

CI/CD

3.2. Setting the Continuous Deployment phase on Gitlab

The API key needs to be added in the Gitlab’s project configuration, in order to be granted
access when deploying the application.
For this go to: Settings — CI/CD — Variables — Add Variable

S spring-demo

1Y Project overview

B Repository

O Issues 0

14 Merge Requests 0

o Cl/CD

@ Security & Compliance

& Operations

@ Packages & Registries

v Analytics

0O wiki

% Snippets

8 Members

£} Settings (1)
General
Integrations
Webhooks

Repository

i/ (2

General pipelines

Customize your pipeline configuration, view your pipeline status and coverage report.

Auto DevOps

Auto DevOps can automatically build. test. and deploy applications based on predefined continuous integration and delivery
configuration. Lear more about Auto DevOps or use our quick start guide to get started right away.

Runners

Runners are processes that pick up and execute jobs for GitLab. Here you can register and see your Runners for this project. More

information

Environment variables are applied to environments via the Runner. You can use environment variables for passwords, secret keys, etc,
Make variables available to the running application by prepending the variable key with K8S_SECRET_. You can set variables to be;

* Protected variables are only exposed to protected branches or tags
* Masked variables are hidden in job logs (though they must match certain regexp requirements to do so)

More information

Environment variables are configured by your administrator to be protected by default

Type T Key Value Protected Masked Environments

Variable HEROKU_APLKEY s v x Al (default) 7
(3)

Reveal values Add Variable

Group variables (inherited)

These variables are configured in the parent group settings, and will be active in the current project in addition to the

Figure 12 Setup API key in Gitlab

Expand

Expand

Expand

Collapse

Add the HEROKU_API_KEY variable and paste the APl Key that you copied in section 2.1.

from Heroku.

Add variable

Key

| HEROKU_AP KEY

Value

PASTE APT KEY|

Type

Variable

Flags
Protect variable @

Environment scope

s All (default) M

Export variable to pipelines running on protected branches and tags only.

[0) Mask variable @

Variable will be masked in job legs. Requires values to meet regular expression requirements. More information

Cancel Add variable

Figure 13 Gitlab Variable for Heroku API ley

10|Page

DISTRIBUTED SYSTEMS CI/CD

Now you can add the deployment stage to your .gitlab-ci.yml file. So the final version of your
.gitlab-ci.yml should look like Figure 14, considering for the --app flag, the name you have
provided for the Heroku application.

B .gitlab-ci.yml s6s Bytes [y

stages:
- build
- test
- checkstyle
- deploy

build:
stage: build
image: maven:3.3.9-jdk-8
script:

- mvn clean package

test:
stage: test
image: maven:3.3.9-jdk-3
script:
- echo "Test DEMO app™
- mvn test &% mvn jacoco:report
- cat target/site/jacoco/index.html | grep -o '.*’
coverage: "/Total.*?([@-9]{1,3})%/"

checkstyle:
stage: checkstyle
image: maven:3.3.9-jdk-8
script:
- echo "Checkstyle DEMO app”
- mvn checkstyle:check

variables:
DE_IP: ec2-52-48-65-248.eu-west-1.compute.amazonaws.com
DB_PORT: 5432
DB_USER: wlryktxyqpyomt
DB_PASSWORD: bee98aZafc7f@c3bcdd7dfedee?278ec5Taschafb@6a4a39blffbl1a7d5851Fd
DB_DBNAME: devideiZwquév4

deploy:
stage: deploy
image: ruby:2.4
script:
- apt-get update -gy
- apt-get install -y ruby-dev
- gem install dpl

- dpl --provider=heroku I-app:spring-dETs-d52828|—-api—key:SHERCKU_ﬁPI_KEY

only:

- production

Figure 14 FINAL CI/CD configuration

For this setup, we used ruby gems to deploy our spring-boot application on Heroku. As marked in
Figure 14, you need to specify the name of your application created in Heroku, and reference the
API key variable previously added in Gitlab. Furthermore, you can configure your deployment
stage to run only when modifications appear on the specified branches.

11|Page

DISTRIBUTED SYSTEMS CI/CD

3.2.1. Test your solution

production

Configuring protected branches

1. Navigate to your project's Settings = Repository.

Scroll to find the Protected branches section.

3. From the Branch dropdown menu, select the branch you want to protect and click
Protect. ...

4. Once done, the protected branch will appear in the “Protected branches” list.

N

3.3. Setting the Database on Heroku (Postgres)

On your application page in Heroku go to Overview and then select Configure Add-ons.

Owverview Resources Deploy Metrics Activity Access Settings
Installed add-ons (EalualLEH I Configure Add-ons @ I

There are no add-ons for this app

You can add add-ons to this app and they will show here. Learn more

Dyno formation (Gunlutti Configure Dynos &
This app has no process types yet
Add a Procfile to your app in order to define its process types. Learn more
Collaborator activity @ Manage Access (3)

There is no recent activity on this app

Collaborator activity will be shown when there are recent deploys

Search the Heroku Postgres Add-on (there are other add-ons for databases as well, make sure you

chose a free one) and click Provision.

12|Page

DISTRIBUTED SYSTEMS CI/CD

©) Personal = > @ ds2020spring-hoot % | openapp || more ¢ |

50.00

x
=
Heroku Postgres ds2020-spring-boot
By choosing "Provision”, this will add Heroku Postgres on your
personal ds2020-spring-boot application.
Plan name
Hobby Dev — Free <

View add-on details in Elements Marketplace

By provisioning this add-on, I agree to the Terms of Service

S

Figure 15 Add database add-on

Under the Overview tag from your application, the Postgres add-on should appear.
0 Personal & > f‘ spring-demo-ds2020 > [spring-demo-ds2020

Overview Resources Deploy Metrics Activity Access Settings

Installed add-ons EUULJLTELTY Configure Add-ans @

m Heroku Postgres 5 Hobby Dev
postgresql-convex-71330

Dyno formation (@R tHT Configure Dynos &

This app is using free dynos

web java -Dserver.port=%PORT $JAVA OPTS -jar target/ds-2020-8.. ON

Figure 16 Installed Add ons for application

By selecting your Postgres add-on you will be redirected to the Datastores page, where you can
see the details about the Database credentials and other connection information.

13|Page

DISTRIBUTED SYSTEMS CI/CD

DATA

@ Datastores > ‘P postgresql-convex-71330

SERVICE heroku-postgresql PLAN hobby-dev BILLING APP @ spring-demo-ds2020

Overview Durability Settings Dataclips

ADMINISTRATION

[Database Credentials

Get credentials for manual connections to this database. View Credentials..

Reset Database

Reset the database to its originally-provisioned state, deleting all data inside it. Reset Database...

Destroy Database

Destroys the database and all of the data inside it. Destroy Database...

Figure 17 Database information

OBSERVATION! Based on the Database credentials obtained from the Heroku Administration
page, update the .gitlab-ci by modifying the marked Environmental Variables from Figure 18.

variables:
DE_IP: ec2-52-45-65-243.eu-west-1.compute.amazonaws.com
DB_PORT: 5432
23 DBE_USER: wlrykixygpyomt
24 DB_PASSWORD: bee9Balafc?8c3bcdd7dfbdesy278ec5fa5cbatb@6a4039b1 0118745851 Fd
5 DB_DBMAME: devideiZvguévd

deploy:
stage: deploy
image: ruby:2.3

48 script:
41 - apt-get update -qy
42 - apt-get install -y ruby-dev

43 - gem install dpl

a4 - dpl --provider=heroku --gpp=spring-demo-ds2@2@ --api-keyv=8HEROKU_API_KEY
45 only:

45 - production

Figure 18 DB Credentials

3.3.1. Test your solution:

application.properties

Open App

IMPORTANT! During the development phase use a local database, since the database created in
the Heroku platform has a limited usage plan. Whenever you consider that a feature is completed,
switch to your production branch.

14|Page

DISTRIBUTED SYSTEMS CI/CD

4. CI/CD - Frontend

For the Frontend application, the same principles apply when setting the CI/CD pipeline. At [2]
you can find a React application configured to be built and deployed on Heroku.

4.1. Test your solution:

References

[1] https://qgitlab.com/ds_20201/spring-demo
[2] https://qgitlab.com/ds 20201/react-demo
[3] https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

15|Page

https://gitlab.com/ds_20201/spring-demo
https://gitlab.com/ds_20201/react-demo
https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

