

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

1 | P a g e

3-tier REST Services

Hands on SPRING REST

Framework

Ioan Salomie Tudor Cioara Ionut Anghel

Marcel Antal

Claudia Daniela Pop Cristina Pop

Part 1 Intro

2 | P a g e

Contents

1. Introduction ...3

1.1. Get the project...3

1.2. Project Structure ...5

2. Project Conceptual Architecture ...6

3. Project Functionality ..8

4. Validation and Error Handling ... 15

4.1. Annotation Based Validation... 15

4.2. Error Handling .. 17

5. Testing the Project ... 18

6. Deploy on Web Server ... 19
7. Reinforcement Learning ... 20

8. References ... 20

Part 1 Intro

3 | P a g e

1. Introduction

The Spring Framework is an application framework for the Java platform. The framework was

first released on the 1st October 2002 and was written by the Australian computer specialist Rod

B. Johnson. Due to its continuous enhancement and development, the framework became widely

used in software companies nowadays. The project example from this laboratory work is a skeleton

for a Spring application that can be used to get the information associated with the users described

in a database.

1.1. Get the project

1. Setup GIT and download the project from https://gitlab.com/ds_20201/spring-demo.git

• Create an empty local folder in the workspace on your computer

• Right-click in the folder and select Git Bash

• Write the commands:

o git clone https://gitlab.com/ds_20201/spring-demo.git

2. Create an empty database in PostgreSQL with the name city-db

3. Import the project in IntelliJ

4. Check the application.properties file from src/main/resources and fill the database.user

and database.password of the local PostgreSQL server.

5. In the application.properties file change the ddl-auto flag from validate to create in order

for the Spring Application to be able to create the structure of the tables:

➢ spring.jpa.hibernate.ddl-auto = create

Observation! Make sure you change the property back to validate, in order to avoid

recreating the database at the following restart.

6. Run the Application in IntelliJ: Right-click on the class Ds2020Application and select

Run 'Ds2020Application'. (Figure 1)

7. Go to your workbench application (pdAdmin) and insert a person in the database using

the following query

Observation! Once inserted the Person in the database, the UUID will be stored in a

binary format, thus the id retrieved should not be copied in the plain form, but should be

hex encoded.

INSERT INTO person (id, name, address, age)
VALUES (decode(replace('45774962-e6f7-41f6-b940-72ef63fa1943'::text,
'-', ''), 'hex'), 'Its me', 'My Address', 22);

https://gitlab.com/ds_20201/spring-demo.git
https://gitlab.com/ds_20201/spring-demo.git

Part 1 Intro

4 | P a g e

Figure 1 Run Application

8. Test the implemented REST requests:

- http://localhost:8080/ => this request should display the message "City APP Service is

running..."

- http://localhost:8080/person => this request should retrieve all the persons from the

database

- http://localhost:8080/person/45774962-e6f7-41f6-b940-72ef63fa1943 => this request

should retrieve the person with the UUID 45774962-e6f7-41f6-b940-72ef63fa1943

Figure 2 Result of the Query that Retrieves a Person by UUID from the Database

9. The project can also be tested from IntelliJ, running the instructions clean and install. Upon

successful building, 8 out of the 8 tests should run successfully.

http://localhost:8080/
http://localhost:8080/person
http://localhost:8080/person/45774962-e6f7-41f6-b940-72ef63fa1943

Part 1 Intro

5 | P a g e

Figure 3 Build the Project in IntelliJ

Figure 4 Test Results

1.2. Project Structure

The project presents some basic operations on the person entity and aims at presenting the layers

involved in performing CRUD operations on the person table shown in the following figure:

When opened in IntelliJ, the project has the following structure shown in Figure 7. All the

components are detailed in Chapter 2.

Part 1 Intro

6 | P a g e

Figure 5 Project Structure in IntelliJ

2. Project Conceptual Architecture
The conceptual architecture of the system is presented below.

Figure 6 Project Conceptual Architecture

Part 1 Intro

7 | P a g e

The following table describes each component:

Table 2-1- Project Components Description

Component Package Description

Repositories ro.tuc.ds2020.repositories Package that contains the repositories,

classes that facilitate the DB access. The

developer can use custom queries to

communicate with the DB.

Entities ro.tuc.ds2020.entities An entity corresponds to a table from the

relational database and each instance of the

entity corresponds to a row from the

database

Services ro.tuc.ds2020.services This layer represents the business logic

layer of the Spring application. It translates

the Data Transfer Objects (DTOs) into

entities and back. For formatting the values

from DTO objects to Entity objects Builder

classes are used. The service layer is

responsible to apply more complex

operations and validations before accessing

the repository layer.

DTOs ro.tuc.ds2020.dtos A Data Transfer Object (DTO) is a special

object exposed outside the application (to

the UI or APIs). It contains part of the

underlying Entities or combinations of

different entities. Additionally, it contains

builders and validators.

Controller ro.tuc.ds2020.controllers The layer that exposes the application

functionality as an API able to handle HTTP

REST requests. It also contains handlers for

various types of exceptions.

Part 1 Intro

8 | P a g e

3. Project Functionality

A simple sequence diagram that involves the interactions between the components is shown in

Figure 7:

Figure 7 Sequence Diagram for GET operation

The processing steps for a person with the uuidPerson 45774962-e6f7-41f6-b940-72ef63fa1943

are described in the following section:

1. Web Browser sends a HTTP request with the method GET to retrieve the user with UUID

= 45774962-e6f7-41f6-b940-72ef63fa1943. This happens by calling the URL:

http://localhost:8080/person/45774962-e6f7-41f6-b940-72ef63fa1943. This URL is

composed of the following parts:

- http: protocol used to communicate

- localhost: address of the server to communicate with. This can be either an URL

resolved by DNS to an IP address, or an IP address. (localhost or 127.0.0.1 in this case).

- 8080: the port on which the web server which will respond to the request is listening.

- http://localhost:8080/person/45774962-e6f7-41f6-b940-72ef63fa1943 . The last part

of the address is mapped to the resources within the application by the web server. In

this case, the application exposes a REST API through its controllers. The mapping is

done in ro.tuc.ds2020.controllers.PersonController.java in three steps, as follows:

i) mapping to the controller: @RequestMapping(value = "/person") (line

18)

ii) mapping to the method within the controller and defining the request

type: @GetMapping(value = "/{id}") (line 40)

iii) defining the parameters of the method at (line 40) and (line 41) (the

name in the request must correspond to the name within the

@PathVariable tag. Inside the method, the Java Parameter is used – int

id).

http://localhost:8080/person/45774962-e6f7-41f6-b940-72ef63fa1943
http://localhost:8080/person/45774962-e6f7-41f6-b940-72ef63fa1943

Part 1 Intro

9 | P a g e

2. The Spring controller ro.tuc.ds2020.controllers.PersonController.java has already

instantiated a service instance due to the annotation @Autowired (line 23). Using this

ro.tuc.ds2020.services.PersonService.java object, inside the getPerson() method it calls the

findPersonById() method (line 42), delegating the processing to the service layer.

Good to know

The Controllers Layer is a layer over the Services Layer and calls the methods which are

provided by the Services Layer.

a) How are the controllers defined?

The controllers are defined using the annotation @RestController. This annotation specifies the

fact that the corresponding annotated class can handle RESTful WEB Services. The REST

(Representational State Transfer) services describe one way of communication between

different computer systems on the internet. REST uses HTTP (Hyper Text Transfer Protocol)

for the communication with the internet resources.

b) How are the controllers mapped to the URLs?

The controllers are mapped to the URLs using mapping annotations. These annotations are used

in two cases:

o For annotating the entire class – in this case the value of the @RequestMapping (line 18)

is a prefix for all the other URLs that are handled by the controller.

Figure 8 RequestMapping for PersonController

o For annotating a specific method – in this case the value of the @GetMapping (line 40)

is a suffix for the URL that corresponds to the method. The parameter value describes

the location while the request method is inferred from the name of the annotation. There

are various types of mapping annotations such as: @GetMapping, @PostMapping,

@PutMapping and @DeleteMapping.

Figure 9 GetMapping for getting all the persons

c) How are the Services Layer instances accessed?

o The objects from the Services Layer are accessed using the @Autowired annotation.

d) What are the most common input parameters of the methods annotated with

@GetMapping or @PostMapping?

o A path variable – in this case the variable is a part of the path specified by the

@GetMapping annotation

Part 1 Intro

10 | P a g e

Figure 2 Example that uses the @PathVariable annotation

o A request body – in this case the object is a DTO that contains information to be inserted

in the application

Figure 3 Example that uses the @RequestBody annotation

3. The PersonService object is called with the method findPersonById(). It uses the

personRepository object that was injected due to the @Autowired annotation (line 24) to

find the person in the DB.

Good to know

The Services Layer is an intermediary layer between the Repositories Layer and the

Controllers Layer.

a) What are the services?

The services provide transactional operations for the business logic. A service method either

completes or the database rollbacks to the previous state.

b) What is the purpose of the Services Layer?

The purpose of the Services Layer is to define methods that perform several operations on a

database in such a way that either all the operations execute successfully or none of them is

executed. In the second case the database rollbacks to the original state. It is responsible to

process the data before accessing the repository layer, in order to ensure that all the business

logic rules hold true.

c) How are the services defined?

The services are defined using the annotation @Component or the annotation @Service.

d) How are the objects defined in the Repositories Layer accessed?

The objects from the Repositories Layer are accessed using the annotation @Autowired (line

24). The purpose of this annotation is to auto wire the Spring beans.

Part 1 Intro

11 | P a g e

Figure 4 PersonService

e) Why does the Services Layer use DTOs instead of entities?

Usually, the DTOs reduce the overhead between the backend and the presentation. The

optimized DTOs contain only that information which is absolutely required. Furthermore, the

purpose of the DTO is also to restrict the access to the information exposed by the entities.

Depending on the roles/ rights of the requesting clients, some information may not be allowed

to be exposed, thus DTOs can be used to restructure the information exposed on the external

services.

4. The PersonRepository method findById is called. This method uses an auto generated

query by the JpaRepository<Person, UUID> superclass to retrieve a user by its id.

Good to know

The Repositories Layer intermediates the communication between the Services Layer and the

Database.

a) How are the repositories defined?

The repositories are defined by extending the interface JpaRepository<T, ID extends

Serializable>. The first argument T describes the type of the entities used by the repositories

while the second argument ID describes the type of the id of the entities.

Figure 5 PersonRepository interface

The PersonRepository handles entities of the type Person which have the id of the type UUID.

b) How to access the database using the Spring repositories?

Part 1 Intro

12 | P a g e

There are different ways to access the database:

o Use one of the methods declared by the JpaRepository. The CRUD operations are

implemented by default by the JpaRepository and it is not necessary to declare them

again in the interface that extends it

Figure 6 JpaRepository snippet

o Create methods based on the fields from the entity (e.g. findById, findByName, etc.).

In this case the name of the method is parsed and interpreted by the Spring framework

in order to execute the corresponding query. Also, there is the possibility to create

queries which are more complex with filters, join and so on (for more details please see

the JpaRepostiory documentation)

Figure 7 UserRepository interface

o Use custom defined queries – in the case of the custom defined queries the name of the

method is not parsed; the purpose of the @Param annotation is to specify the names of

the parameters which are used in the definition of the query

Figure 8 Custom Defined Queries

5. The UserRepository retrieves a user entity object instantiated with values from the DB.

Good to know

a) What are the entities?

An entity represents a table from the relational database and each instance of the entity

corresponds to a row from the database. An example of entity is shown in Figure 17.

Part 1 Intro

13 | P a g e

Figure 9 Person Entity

b) What are the main requirements for the creation of the entities?

o The entity class must be annotated with the annotation @Entity

o The id and the columns are mapped using the annotations @Id and @Column

o The class must have one public/protected no-argument constructor

c) Which are the most common annotations used by the entities?

The most common annotations which are used in the mapping process are described below:

o @Entity – specifies the fact that the class which is annotated with this annotation is an

entity

o @Table – specifies the table to which the entity is mapped

o @Id – the annotated field is an ID of the table

o @Column – the annotated fields are columns of the table from the database

o @OneToOne – maps the one-to-one relationship between two tables

o @OneToMany – maps the one-to-many relationship between two tables

o @ManyToOne – maps the many-to-one relationship between two tables

o @ManyToMany – maps the many-to-many relationship between two tables

6. A person entity is returned to the PersonRepository.

7. A person DTO is returned to the PersonService.

8. The PersonService converts the entity object to a Data Transfer Object (DTO). The

BUILDER Design Pattern is used in this case to ease the adaptation between the two

classes.

Part 1 Intro

14 | P a g e

Good to know

a) What are the DTOs?

The DTOs (Data Transfer Objects) are objects that carry data between processes and are exposed

by the application to the UI or through an API.

b) What is the relation between the DTOs and the entities?

If the database changes then the mappings used by the entities must also change, but the objects

(DTOs) might remain unchanged.

c) Why are the DTOs used?

The motivation for using the DTOs is represented by the fact that they reduce the cost of

communication between the processes. The DTOs aggregate in one call data that might be

transferred by several calls. Furthermore, DTO provide the option to selectively hide sensitive

data, that otherwise would be exposed if using directly the entity object.

d) How to convert between entities and DTOs?

One possibility to convert the entities to DTOs or vice-versa is to use a class that contains static

methods as in the figure presented below.

Figure 1810 PersonBuilder

9. A PersonDTO is returned to the controller.

10. Transparent to the programmer, the Spring framework calls the Jackson Converter to

convert the retrieved user DTO to a JSON object that will be sent to the browser.

1. {
2. "id": "45774962-e6f7-41f6-b940-72ef63fa1943",
3. "name": "Its me",
4. "age": 22
5. }

Figure 19 JSON with data from the DTO object

11. The Data is displayed in the browser:

Part 1 Intro

15 | P a g e

4. Validation and Error Handling

There are several options possible for validating the data received from a HTTP client, that

aims to insert/update different resources managed by the server application. The most common

one is to manually validate the data in code using different conditionals to check if certain

fields are null, empty, etc. However, a more optimal approach is to use Annotation Based

validation. For this there are several things you need to consider.

4.1. Annotation Based Validation
1. Add the necessary validation dependencies in pom.xml

Figure 20 Validation Dependencies

2. Annotate the startup class (Ds2020Application) with the @Validated annotation

Figure 21 Enable Validation at application level

3. Mark the parameters that need to be validated by using the @Valid annotation in the

Controller’s methods:

Figure 22 Apply Validation at method parameters level

Once the request gets in the controller, the request body object (personDTO) will

automatically be validated according to the validation rules.

4. The validation rules are specified in the PersonDetailsDTO class through annotations:

Part 1 Intro

16 | P a g e

Figure 23 Configure Validation Rules

There are predefined annotations, like @NotNull, however you can also define your own

custom annotations that should be used as validator.

5. @AgeLimit is defined as a custom annotation, that given the age limit will validate whether

the value of the age field is greater than the limit imposed through the annotation

(limit=18).

The AgeLimit annotation is defined in ro.tuc.ds2020.dtos.validators.annotation package.

Figure 24 AgeLimit Annotation

 Here you can define the error message (line 17), default values for the limit (line 15) and

most important the Validator class that provides the actual validation code (line 12).

Figure 25 AgeLimit Validator

The AgeValidator class is defined in the ro.tuc.ds2020.dtos.validators package. By implementing

the ConstraingValidator interface, the annotation that the validator is responsible for and the input

types are specified. During the initialize method the age provided as a limit through the annotation

is loaded and the isValid method validates the input provided through the age field against the

ageLimit set through the annotation.

Part 1 Intro

17 | P a g e

4.2. Error Handling

Whenever an exception is encountered in the application (can be due to a validation constraint

that failed, or a custom thrown exception), a RestExceptionHandler is defined to gather all these

exceptions and handle them in a uniform approach.

The Handler class is annotated with the @ControllerAdvice annotation and can be found in the

ro.tuc.ds2020.controllers.handlers package.

Figure 26 Application Level Exception Handler

As noticed in the previous figure the class is responsible to handle exception as (line 50):

ResurceNotFound, DuplicateEntry and EntityValidation. These are custom exceptions defined in

ro.tuc.ds2020.controllers.handlers.exceptions.model package. These are exceptions that can be

thrown from the service layer as depicted in the following figure, line 40:

Figure 27 Resource Not Found exception thrown

Furthermore, the validation exception thrown because of violating the constraints presented in

section 4.1, are handled through handleMethodArgumentNotValid at line 24.

As a result, when a POST is issued with invalid data, providing a minor person, the message

provided in the custom annotation will be returned and the 400 HTTP code set on the result.

Part 1 Intro

18 | P a g e

Figure 28 Validation Failed POSTMAN Example

Similarly, when requesting a person that does not exist in the database, a 404 HTTP code is

returned, together with a JSON in the response body specifying the resource and the cause together

with other details about the request:

Figure 29 Resource Not Found POSTMAN Example

5. Testing the Project
1. Configure the database properties from the src/main/resources/application.properties

file

2. Run the project as: Run Click on Ds2020Application > Run 'Ds2020Application'

3. Use a tool such as POSTMAN to make REST API calls and retrieve or insert persons

from/in the database:

URL: localhost:8080/person/

Part 1 Intro

19 | P a g e

Figure 30 Example of using Postman tool

6. Deploy on Web Server
Deploy the Spring application on a Tomcat Web Server:

• Modify the packaging in pom.xml from JAR to WAR

• Build the project (in IntelliJ: Maven-> Clean -> Install)

• Copy the WAR from project/target to /apache-tomcat/webapps

• Run Apache Tomcat: /bin/startup.bat

Part 1 Intro

20 | P a g e

7. Reinforcement Learning

Answer the following questions:

• What is the Inversion of Control (IoC)?

• What is the Dependency Injection?

• Explain the @Autowired annotation.

• Explain the @Entity annotation.

• What is the Spring IoC container?

• What are the Spring beans?

8. References

[1] http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html

[2] https://en.wikipedia.org/wiki/AspectJ

[3] https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-

features.html#boot-features-messaging

[4] http://www.baeldung.com/websockets-spring

[5] http://docs.oracle.com/javaee/5/tutorial/doc/bnbqa.html

