

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

1 | P a g e

React App

Hands on REACT

 Framework

Ioan Salomie Tudor Cioara Ionut Anghel

Cristina Pop Marcel Antal Claudia Antal

Part 1 Intro – React App

2 | P a g e

Contents

1. Introduction ...3
2. Hyper Text Markup Language..4

3. JavaScript ..6
4. HTML Document Object Model .. 10

5. Cascading Style Sheets .. 12

6. Hands-on React .. 14

6.1. Prerequisites: Install and configure the following resources ... 14
6.2. Get the Project .. 14

6.3. Testing the application .. 17
6.4. Project Conceptual Architecture .. 18

6.5. Project Functionality and Implementation Details ... 19

6.5.1. Main Project Components .. 19

6.5.2. Project Functionality – Retrieve and Display Scenario ... 23

7. Reinforcement Learning ... 28

8. References ... 28

Part 1 Intro – React App

3 | P a g e

1. Introduction
The objective of this laboratory work is to teach you the basic steps for building a React

application. React is a JavaScript library used for building single page applications by means of

reusable UI components.

To get started with React you need to know the basics of the Hyper Text Markup Language

(HTML), JavaScript, HTML Document Object Model (DOM) and Cascading Style Sheets (CSS)

which will be introduced in Sections 2-5.

Section 6 will detail the steps required to build a basic React application that communicates with

the Spring 3-tier REST Service application (i.e. spring-demo) introduced in the Hands on Spring

Rest Framework document.

Part 1 Intro – React App

4 | P a g e

2. Hyper Text Markup Language
HTML is a standard markup language which is used to describe the structure of a Web page by

means of HTML elements. An HTML element is represented by specific start and end tags, can

have (i) attributes whose purpose is to provide more information to the HTML element, and (ii) a

content specified between the start and end tags. Figure 1 illustrates an example of HTML

document describing the content of a Web page that will display a list of students and a link to

navigate to a faculty department’s Web site.

Figure 1: Example of HTML document and the corresponding displayed Web page

Table 1 describes the HTML elements part of the HTML document in Figure 1.

Table 1: Description of the HTML elements from Figure 1

HTML element Description

<!DOCTYPE
html>

Document type declaration - defines the document to be HTML5. Compulsory!

<html> Root element of the HTML document. Compulsory!

<head> Container for the metadata (e.g. title, styles, scripts) of an HTML document.

<title> The title of the document which will be displayed in the browser’s title bar or in the page’s

tab.

<style> Defines the style information for the current HTML document. For example, in this case all

table columns will have a solid border 1px thick and colored in light grey, the text will be left

aligned and the space between the content of a cell and its border will be of 8px.

Part 1 Intro – React App

5 | P a g e

Note: the style of an HTML element can also be defined inline with the HTML element

meaning that the style will be applicable only to that element – see how the style of the HTML

table is defined in Figure 1.

<body> Encloses the part of the HTML document that will be displayed in the browser.

<h1> Defines a large heading with the text “List of students”.

<table> Defines a table with a header, rows and columns with content.

Note:

• The “id” attribute can be used in Web page manipulations operations to refer to this

table. All HTML elements can have an ID.

• The “style” attribute is used to add styles to this table.

<tr> Defines a row of a table.

<th> Defines the header of a table.

<td> Defines the column of a table.

<a> Defines an HTML link. Notice the “href” attribute used to indicate the URL of the destination.

HTML defines other elements too, such as paragraphs (<p>), images (), buttons

(<button>), lists (), etc. For a complete list of HTML elements check this link.

Inside an HTML document you can also define a form, by using the <form> element, for

collecting user input that will be sent to a server for further processing. The <form> element can

contain elements such as text input fields (<input type=”text”>), radio buttons (<input

type=”radio”>), checkboxes (<input type=”checkbox”>), submit buttons (<input

type=”submit”>), or clickable buttons (<input type=”button”>), labels (<label>), etc. For a form

element you can specify the resource that will process the user input collected in the form by using

the action attribute, and the HTTP method to be used when sending the form data within the

method attribute. Figure 2 illustrates an example of using an HTML form to collect the information

about a student:

Figure 2: Example of defining an HTML form

https://www.w3schools.com/html/html_elements.asp

Part 1 Intro – React App

6 | P a g e

3. JavaScript
JavaScript is the programming language of the Web which allows a full integration with HTML

and CSS and is supported by all popular browsers [11-12]. Using JavaScript, you can write

programs called scripts that can be inserted in the HTML of a Web page and executed once the

page loads in the browser.

With the emergence of JavaScript engines (i.e., computer programs that execute JavaScript),

JavaScript can be executed on any device that has such an engine installed. The browsers have

JavaScript engines embedded; for example, V8 is found in Chrome and Opera, while

SpiderMonkey in Firefox. The basic processing steps of a JavaScript script in a JavaScript engine

are illustrated in Figure 3.

Figure 3: JavaScript Processing Steps in a JavaScript Engine

JavaScript’s capabilities depend on the environment it’s running in. For example, Node.js, which

is a JavaScript runtime built on V8 engine, supports functions that allow JavaScript to read/write

arbitrary files, perform network requests, etc. Generally, with JavaScript you can manipulate Web

pages by adding new HTML, changing the content or the styles, reacting to user actions,

sending requests over the network to remote servers, getting and setting cookies, remembering

the data on the client side in the “local storage”.

Recently, many languages providing several features appeared that are converted to JavaScript,

such as TypeScript, CoffeeScript, Brython, etc.

JavaScript can be inserted almost anywhere into an HTML document using the <script> tag.

Table 2 overviews the main concepts of the JavaScript language.

Table 2: Main concepts of the JavaScript language (adapted from [11])

Concept Description

Statements Definition Syntax constructs and commands that perform actions.

Example alert('Please insert the name of the student');

Comments Definition Informative text that can be placed anywhere within the script without affecting

the functionality of the script.

Example // One line comment
alert('Please insert the name of the student');

/* Multiline comment.
Multiline comment.*/
alert('Please insert the name of the student);

Part 1 Intro – React App

7 | P a g e

Variables Definition A variable is created with the “let” keyword and is used to store information.

The assignment operator can be used to put data into a variable. You can put

any type in a variable – a variable can be a string, then a number, and so on.

!!! JavaScript is case sensitive!!!

Example let product;
product = 'Apple';

OR
let product = 'Apple';

Constants Definition Variables declared using “const” which cannot be reassigned.

Example const aConstant = 'I am a constant';

Data types Definition A value in JavaScript is always of a certain type. JavaScript defines 8 basic data

types in JavaScript: Number, BigInt, String, Boolean, the “null” value, the

“undefined” value, object type, symbol type.

JavaScript is called “dynamically typed”, because even if it has data types, the

variables are not bound to any of them.

The typeof operator can be used to return the type of an argument.

Example // The assignments bellow do not generate any errors
let message = "John";
message = 123;

Interaction:

alert, prompt,

confirm

Definition alert - shows a message and waits for the user to press “OK”.

prompt - shows a modal window with a text message, an input field for the

visitor, and the buttons OK/Cancel.

confirm - shows a modal window with a question and two buttons: OK and
Cancel. The result is true if OK is pressed and false otherwise.

Example alert("Hello");
result = prompt(title, [default]);
let isStudent = confirm("Are you a student?");
alert(isStudent); // true if OK is pressed

Basic

operators

Definition Addition +, Subtraction -, Multiplication *, Division /, Remainder %,

Exponentiation **

String concatenation with binary +, Assignment =, Increment ++, Decrement --

Bitwise

operators

Definition AND(&), OR (|), etc.

Comparisons Definition Greater/less than: a > b, a < b.

Greater/less than or equals: a >= b, a <= b.

Equals: a == b.

Not equals: a != b

Conditional

branching: if,

'?'

Example

if(…)
statement

let year = prompt('When were you born?', '');
if (year == 2015) alert('You are young!');

Conditional

operator ‘?’

let result = condition ? value1 : value2;

Logical

operators

Definition || (OR), && (AND), ! (NOT).

Loops: while

and for

Definition -

while

while (condition) {
 // loop body
}

do {
 // loop body
} while (condition);

Part 1 Intro – React App

8 | P a g e

Definition -

for

for (begin; condition; step) {
 // ... loop body ...
}

for (let i = 0; i < 3; i++) {
 alert(i);
}

The "switch"

statement

Definition switch(x) {
 case 'value1': // if (x === 'value1')
 ...
 [break]

 case 'value2': // if (x === 'value2')

 [break]

 default:
 ...
 [break]
}

Functions Definition They are created as separate statements in the main code flow and they can be

invoked anytime regardless their place in the script.

function name(parameters) {
 ...body...
}

Example function addition(number1, number2){
 return number1+number2;
}

Function

expressions

Definition Represent another means for creating functions. The function is created when

the execution reaches it and is available only from then on.

Example let addition = function(number1, number2) {
 return number1 + number2;
};

Callback

functions

Definition Function passed as arguments to other functions that will be executed in certain

conditions.

Example /* if the condition evaluates to true then the function action1
will be executed, otherwise function action2 will be executed*/

function execute(condition, action1, action2){
 if(condition) action1().
 else action2();
}

function action1(){
…
}

function action2(){
…
}

Arrow

functions

Definition Represent another means for creating functions in a more simple and concise

way.

Part 1 Intro – React App

9 | P a g e

Example Syntax for creating an arrow function with N arguments which evaluates an

expression and returns the result of the evaluation:
let func = (arg1, arg2, …, argN) => expression

Equivalent to:
let func = function(arg1, arg2, …, argN){
 return expression;
}

!!!In case of multiline arrow functions, enclose the expressions or statements in

curly braces and include an explicit return keyword!!!

Objects Definition Objects are used to store keyed collections of various data and more complex

entities. An object can be created with figure brackets {…} with an optional list

of properties. A property is a “key: value” pair, where key is a string (also

called a “property name”), and value can be anything.

Use the “for…in” loop to go through the keys of an object: for(key in object)

{…}

Example let student = {
 name: “John Doe”,
 group: “30431”
}
// Property values are accessible using the dot notation: student.name.

Arrays Definition An array can store elements of any type and can be declared as:
let array = new Array();

OR
let array = [];

Loop an array:
for (let i=0; i<array.length; i++){alert(array[i]);}

OR
for (let elem of array){alert(elem);}

Part 1 Intro – React App

10 | P a g e

4. HTML Document Object Model
When a Web page is loaded, the browser creates a Document Object Model (DOM) of the page

which is represented as a tree of nodes (i.e. objects), each node corresponding to an HTML element

in that page. Additionally, HTML DOM defines properties, methods and events for all HTML

elements. HTML DOM is also an API for JavaScript allowing it to manipulate (i.e. add, change,

remove) the HTML elements, their attributes, CSS styles and HTML events on one hand, and react

to HTML events on the other hand. Figure 4 illustrates the graphical representation of the

Document Object Model for the HTML document in Figure 1.

Figure 4: Document Object Model representation for the HTML document in Figure 1

All operations on the DOM start with the document object. Then, in order to manipulate HTML

elements with JavaScript we first have to find the elements – HTML DOM provides several means

to find elements such as by:

• ID – the example below finds the HTML element with the ID equal to “tableStudents”

• Tag name – the example below finds all “td” elements

–

and others.

The DOM can also be used to change the value of HTML elements’ attributes. The syntax for

changing an HTML element by one of its attributes is:

The syntax for using DOM to change the style of an HTML element is the following:

Using DOM you can add event handlers:

var tableElement = document.getElementsByTagName(“td”);

var tableElement = document.getElementByID(“tableStudents”);

element.attribute = new value

element.onClick = function(){code}

element.style.property = new style

Part 1 Intro – React App

11 | P a g e

All DOM nodes can generate events (e.g. mouse events, keyboard events, form element events,

document events, CSS events). In order to handle events, an event handler must be defined which

runs some JavaScript code in case of user actions. Figure 5 shows an example of how the onclick

event for a button can trigger the execution of a JavaScript function that displays an alert with the

name that has been inserted.

Figure 5: Example of handling the onclick event for a button

The most common HTML events that can occur are the following [12]:
Event Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

Part 1 Intro – React App

12 | P a g e

5. Cascading Style Sheets
Cascading Style Sheets (CSS) is a rule-based language that allows us to specify how the HTML

elements will look like (in terms of layout, color, size etc.) when they are displayed in the browser.

A CSS rule consists of the following elements (see an example in Figure 6) [Ref]:

• Selector – used to select the HTML element that will be styled. The selectors in Figure 6

are:

o “h1” – in this case the selector applies the color red and sets the font size as 5 times

greater than the current font size.

o “.special” – in this case the selector applies the color blue to all elements with the

class special.

o “#customized” – in this case the selector sets the base font of the element with the

id customized to 16-pixel tall Lucida Grande or one of a few fallback fonts.

• Declarations – one declaration is composed of a property and a value and specifies what

value should be given to the property of an element.

Figure 6: CSS file fragment illustrating the types of selectors that can be defined (adapted from Ref)

For a complete list of CSS selector please check this link.

The styling of HTML elements can be also done based on their location in the HTML

document (e.g. li em means a selector that will select any element that is located inside an

 element), or based on state (e.g. a:visited means a selector that selects an <a> anchor element

that is visited).

Beware of CSS rules collision which occurs when multiple types of selectors are used in order

to control the appearance of HTML elements. The order of priority is the following:

1) #id selectors

2) .class selectors

3) tag selectors

https://developer.mozilla.org/en-US/docs/Glossary/CSS_Selector
https://developer.mozilla.org/en-US/docs/Glossary/CSS_Selector
https://www.w3schools.com/cssref/css_selectors.asp

Part 1 Intro – React App

13 | P a g e

CSS rules can be applied to an HTML document using one of the following methods:

1) Link the CSS file from the head of the HTML document – the recommended method!

Figure 7: Example of linking the CSS file from the head of the HTML document

2) Inline, using the style attribute inside an HTML element:

Figure 8: Example of applying a CSS rule inline

3) Internally – by using a style element in the <head> section:

Figure 9: Example of applying a CSS rule internally

Part 1 Intro – React App

14 | P a g e

6. Hands-on React
React is a JavaScript library developed by Facebook that is used to build complex user

interfaces out of independent and reusable components [5]. The name React comes from the fact

that this technology keeps a lightweight representation of the Document Object Model (DOM) in

memory, called the virtual DOM - virtual representation of the user interface [7], and once React

notices that a component changes it updates the component in the real DOM – this is how React

reacts to the components’ state changes [1].

As React’s only objectives are to render the view and synchronize it with the state, in order to

build complete applications, the developer must use other external libraries (e.g. libraries for

routing, for calling HTTP services, etc.) [1]. This feature may be considered an advantage as it

allows the developer to choose the preferred libraries thus not being forced to use one bundled in

a framework such as Angular [1].

The project example from this laboratory work is a skeleton for a React application that can be

used to communicate with the 3-tier REST Service application developed in Spring and introduced

in the Hands on Spring Rest Framework document.

6.1. Prerequisites: Install and configure the following resources

Resource Link Description

Node.js and

Node Package

Manager

(NPM)

Link Node.js is a JavaScript runtime built on Chrome's V8 JavaScript

engine.

NPM is a package manager for Node.js and is installed with Node.js

– can be used to install 3rd party libraries.

Note: After installing the last version of Node.js, check that Node and

NPM are installed using the commands:

- node –v

- npm –v

IntellijIdea Link IDE that allows the development of JavaScript projects as well.

Note: WebStorm [Link] , or Visual Studio Code [Link] can be

considered an alternative IDEs

NGINX Link NGINX is a lightweight and high performance Web server

6.2. Get the Project

To download and configure the example follow the steps described below:

1) Setup GIT and download the project from

https://gitlab.com/ds_20201/react-demo

• Create an empty local folder in the workspace on your computer

• Right-click on the folder and select Git Bash

• Write the command:

o git clone https://gitlab.com/ds_20201/react-demo.git

https://nodejs.org/en/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/
http://nginx.org/en/download.html
https://gitlab.com/ds_20201/react-demo

Part 1 Intro – React App

15 | P a g e

2) In IntelliJIdea check if the JavaScript and TypeScript bundled plugin is enabled by going

to the Plugins page as follows: File->Settings->Plugins (see Figure 10):

Figure 10: IntelliJIdea Plugins administration page

If the JavaScript and TypeScript bundled plugin is not installed, search for it in the JetBrains

Plugin Repository (check the Marketplace tab in Figure 10) and install it.

3) Search for the location of the project on the disk, enter the name of the project react-

demo and click OK.

Part 1 Intro – React App

16 | P a g e

Figure 11. Steps to import project

When opened in IntelliJIdea, the project has the structure from Figure 12. All the components are

detailed in Section 6.2.

Figure 12: React project structure

Part 1 Intro – React App

17 | P a g e

To properly run the project, follow the next steps:

1) From IntelliJIdea open the terminal from View->Tool Windows-> Terminal.

2) Download the packages writing the following command in the terminal:

npm install

3) Run the project: in the IntelliJIdea terminal write the

command: npm start

The command will run the development server on port 3000.

Then open http://localhost:3000/ to see the application.

4) Upon successful execution, you should access the react-demo web application from the

browser (see Figure 13).

Figure 13: Welcome page of the react-demo Web application

6.3. Testing the application
1. Insert several persons in the table persons from the city-db database;

2. Run the spring-demo application as presented in Laboratory 3-Tier Rest Services;

3. Run the react-demo application as explained section 6.2 of this Hands-On;

4. Access the following link in the browser: http://localhost:3000/

5. Click on the Persons option from the menu. You should be able to visualize the persons

that populate the person table from the city-db database.

http://localhost:3000/
http://localhost:3000/

Part 1 Intro – React App

18 | P a g e

6.4. Project Conceptual Architecture
The conceptual architecture of the react-demo application is presented in Figure 14. The

application consists of a COMMONS module and a set of modules, one for each route defined in

the application. The COMMONS module includes functionality that is used by all the other

components such as functionality for (i) performing HTTP requests, (ii) implementing error

handling components, etc. Each module defined for each route consists of a component container,

a set of child components and an API used to send specific HTTP requests to the spring-demo

application. In particular, the react-demo application communicates with the spring-demo

application through JSON (JavaScript Object Notation) objects. JSON is a syntax which can be

used to store and exchange data.

NOTE: when designing a React application, the first step is to decompose the design of the user

interfaces in a set of independent components that can be further assembled to form the final user

interfaces [2].

Figure 14: Conceptual architecture of the react-demo application and its integration with 4the spring-demo application

Part 1 Intro – React App

19 | P a g e

6.5. Project Functionality and Implementation Details

6.5.1. Main Project Components
The index.html file (see a fragment in Figure 15) located in the public directory of the React

application is the first file that the browser will load when we write the URL (i.e.

http://localhost:3000/) of the React application in the browser. Note: The project will build only if

the index.html file exists and is located in the public directory.

Figure 15: Fragment of the index.html file from the public directory

The file index.js (see a fragment in Figure 16) located in the src directory is the first file

that gets executed – it can be considered as the entry point of the application. Like the index.html

file, the file index.js must exist in the src directory to allow the project to build. If we analyze the

code fragment from Figure 16 we can notice that the main task of the index.js file is to render the

App component in the ‘root’ div in the DOM.

Figure 16: Fragment of the index.js file

The App component is implemented in the file app.js (see Figure 17). This component represents

the root component that contains the other child components of the application.

http://localhost:3000/

Part 1 Intro – React App

20 | P a g e

Figure 17: Fragment of the App.js file

The App component’s render method returns a JSX fragment describing how the user interface

will look like (see Figure 18). The App component uses a React Router to implement the routing

of the application. In this demo, the React Router is already installed, however if you want to

include it in another project you can install it from the public npm registry using npm. In the App

component, the router handles 3 “pages” namely the home “page”, the persons “page” and the

error “page”.

Figure 18: The part of the UI displayed by the App component

Part 1 Intro – React App

21 | P a g e

GOOD TO KNOW

1) What is a React component?

A React component is a JavaScript class extending React.Component having:

• a state property - represents the data we want to display when the component is rendered; it

may change over time, and it should be a plain JavaScript object. !!! Never modify this.state

directly – use the setState() method!!!

• a render method (this is the only compulsory method). The render method describes how the

component should look like. More specifically, the render method outputs a React Element

which is a simple JavaScript object that represents a DOM element in memory.

• props – the parameters that a React component can take in.

Note:

• A React component can be also defined as a JavaScript function – in this case the component

is called a function component.

• The values that should not be rendered can be defined as fields of the component

2) What is JSX?

JavaScript XML (JSX) is an XML-based extension of JavaScript that is used for describing how

the user interface will look like. JSX produces React elements that are further translated into

objects used to build and update the DOM [8]. JSX expressions can be returned from functions,

can be passed to functions or can be used as the value for a constant or variable.

3) What is the difference between .js and .jsx file extensions?

The file implementing a React component can have either the extension js or jsx – the difference

between the two extensions is the fact that jsx facilitates better code completion.

Figure 19 illustrates how the App React component is rendered in the root <div> from the

index.html file.

Figure 19: Example showing how the App component is rendered in the ‘root’ div from index.html

Part 1 Intro – React App

22 | P a g e

It can be noticed in Figure 19, that besides the App component, the user interface also includes the

Home component. This component (see Figure 20) is rendered each time the react-demo

application is launched, or when no other path is specified after /. The component uses other

components (i.e. Jumbotron; Container; Button) imported from the reactstrap library. In this

demo, reactstrap library is already installed, however if you want to include it in another project

you can install it from the public npm registry using npm install --save reactstrap react react-dom.

Figure 20: Fragment of the Home.js file

Part 1 Intro – React App

23 | P a g e

6.5.2. Project Functionality – Retrieve and Display Scenario
This sub-section will detail the implementation of the functionalities for retrieving and displaying

the list of persons stored in the city-db database. To have access to the data persisted in the city-

db database, the front-demo application will interact with the spring-demo application.

An overview of the flow of operations is presented in Figure 21 and detailed below:

Figure 21: Overview of the flow of operations performed to retrieve and display the list of persons stored in the city-db

database

Steps 1-2: The PersonContainer component (see Figure 22) is rendered each time the option

Persons is chosen from the Menu (see Figure 19). This component is responsible for showing the

list of persons stored in the city-db database.

Figure 22: The Person Management page displayed when the PersonContainer component is rendered

Part 1 Intro – React App

24 | P a g e

Once an instance of the PersonContainer component is created, React calls the component’s

constructor (see Figure 23). Generally, the role of a constructor is to (1) initialize the local state of

a component, by assigning an object to this.state and to (2) bind event handler methods to an

instance [3]. For more information regarding techniques for handling events check [4].

Figure 23: implementation of the constructor in the PersonContainer component

React then calls the render() method (see Figure 24) which returns the elements (i.e. <div>,

<CardHeader>, <Card>, <Row>, <Col>, <Table> etc.) that will instruct React to render the

corresponding DOM nodes and user-defined components. React then updates the DOM to match

the component’s render output.

Figure 24: Implementation of the render() method in the PersonContainer component

Part 1 Intro – React App

25 | P a g e

GOOD TO KNOW [3]

What is the role of the render() method?

The render() method is the only method required to be implemented in a React component. The

aim of this method is to analyze this.props and this.state and return one of the following: a React

element that will eventually be rendered to a DOM, a user-defined component, arrays, strings,

numbers, Booleans, null, etc.

Note: the render() method cannot modify the state of the component.

Component mounting versus unmounting

Component mounting occurs when a React component is rendered to the DOM for the first time.

Component unmounting occurs when the DOM produced by a React component is removed.

Other lifecycle methods

A React component has several lifecycle methods which can be overridden to implement

specific functionalities desired to be executed at particular stages. The figure below shows the

lifecycle diagram [3] corresponding to a React component.

• componentDidMount() – is invoked immediately after a React component is mounted;

in this method you should add any initialization code such as performing remote requests

to the back-end application in order to get some data required for initialization.

o The method setState() can be called after obtaining the data to trigger an extra

rendering before the browser updates the screen.

• componentDidUpdate() – is invoked immediately after updating occurs. Network

requests can be performed here only if the current props are different than the previous

props.

o The method setState() can be invoked but it must be wrapped in a condition so

as to avoid an infinite loop.

• componentWillUnmount() – invoked immediately after a component is unmounted and

destroyed. This is the place to perform any necessary cleanup such as canceling network

requests. The method setState() cannot be invoked here.

The setState() method – enqueues changes to the component state and tells React that this

component and its children need to be re-rendered with the updated state. This is the primary

method you use to update the user interface in response to event handlers and server responses.

It does not always immediately update the component.

Part 1 Intro – React App

26 | P a g e

When the PersonContainer component’s output is inserted in the DOM, React will call the

componentDidMount() lifecycle method which in turn invokes the method fetchPersons() to get

the list of persons to be displayed – see Figure 25.

Figure 25: Implementation of the componentDidMount() and fetchPersons() methods in the PersonContainer component

Note at this step how a callback is passed as an argument to the getPersons method. The callback

is represented by an arrow function, which takes as arguments the result returned in the HTTP

response message, the status code of the HTTP response message and the err representing the

error returned if the request has not succeeded. When the callback is executed, the following steps

are performed:

• If the result is not null and the HTTP status code is 200 (meaning that the request has

succeeded) then the state of the component Person Container is updated by calling the

setState() method. In particular, the tableData is assigned to the result returned by the

back-end application, and isLoaded is set to true meaning that the table displaying the list

of persons can be rendered.

o Note that for rendering the table with the list of persons, conditional rendering is

used (see Figure 24): only if the value of this.state.isLoaded is true then the table

is rendered!

• Otherwise, the state of the component Person Container is updated by calling the

setState() method. In particular, the errorStatus is assigned the value of the HTTP status

code, while error is assigned the error details.

o Note that for rendering the APIResponseErrorMessage component, conditional

rendering is used (see Figure 24): only if the errorStatus is greater than 0 then the

APIResponseErrorMessage is rendered. In case the APIResponseErrorMessage is

rendered, the errorStatus and error will pe passed as props to the component.

Step 3: In order to get the list of persons stored in the city-db database, the Persons component

uses the getPersons() JavaScript function implemented in person-api.js to perform an HTTP GET

request to the spring-demo back-end (see Figure 26).

Part 1 Intro – React App

27 | P a g e

Figure 26: Implementation of the getPersons() method in person-api.js

Step 4: In order to send HTTP requests, react-demo uses the fetch API (see Figure 27) in the file

rest-client.js. Other APIs can be used for this such as XMLHttpRequest [9] and axios [10].

Figure 27: Implementation of the function performRequest in the rest-client.js

Step 5: an HTTP GET request for retrieving the list of persons is sent to the spring-demo

application.

Step 6: the spring-demo application returns a list of PersonDTO objects converted to a JSON

object together with the status of the response (see Figure 28).

Part 1 Intro – React App

28 | P a g e

Figure 28: Response returned to the react-demo application in case the request succedeed (screenshot from the Browser

Developer Tools)

Steps 7-8: In case the request succeeded, the callback is executed, in this case the arrow function

presented in Steps 1-2. The arguments passed to the arrow function are the JSON structure

containing the list of persons, and the response status code which is 200 in this case. If the request

failed, then callback is executed with the following arguments passed to it: the response status

code and the received error.

7. Reinforcement Learning

Answer the following questions:

• What is a React Component?

• What is a route?

• How is data serialized and de-serialized?

• Which component is rendered first in a React App?

8. References
This section presents a selective bibliography recommended to the students and used by the

instructors in the preparation of the Hands On React document.

[1] https://www.youtube.com/watch?v=Ke90Tje7VS0

[2] https://ibaslogic.com/react-tutorial-for-beginners/

[3] https://reactjs.org/docs/react-component.html

[4] https://reactjs.org/docs/handling-events.html

[5] https://reactjs.org/tutorial/tutorial.html

[6] https://www.w3schools.com/js/js_htmldom.asp

https://www.youtube.com/watch?v=Ke90Tje7VS0
https://ibaslogic.com/react-tutorial-for-beginners/
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/handling-events.html
https://reactjs.org/tutorial/tutorial.html
https://www.w3schools.com/js/js_htmldom.asp

Part 1 Intro – React App

29 | P a g e

[7] https://reactjs.org/docs/faq-internals.html

[8] https://reactjs.org/docs/introducing-jsx.html

[9] https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

[10] https://github.com/axios/axios

[11] https://javascript.info/

[12] https://www.w3schools.com/js/

[13] https://developer.mozilla.org/en-US/docs/Web/HTML/Element

[14] https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/introducing-jsx.html
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://github.com/axios/axios
https://javascript.info/
https://www.w3schools.com/js/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

