
DSRL – Distributed Systems Research Laboratory

Technical University of Cluj-Napoca

2021

Indirect Communication
Using Queues and Web

sockets

DSRL – Distributed Systems Research Laboratory

Contents

• Indirect communication client-server:
• Point-to-Point communication: Queues

• Publish-Subscribe communication: Topics

• Technologies

• Indirect communication server-client:
• Long pooling

• WebSocket

• RabbitMQ deployment

• Conclusion

DSRL – Distributed Systems Research Laboratory

Client Server

Request

Reply

A request is issued …. (0)

The request is transmitted…. (2)

The request is received…. (3)

The response is ready…. (4)

The response is transmitted…. (5)

The response is received …. (6)

Client-Server Indirect Communication

Client is blocked until
reply (1)

Synchronous Communication

• Client waits until server processes request
• Client is blocked until receiving reply
• Sometimes, client does not need the reply – only the ACK that message is being received

DSRL – Distributed Systems Research Laboratory

Client-Server Indirect Communication

Use cases:
• Applications where server does not process real time data
• Applications where message sending rates are variable
(time intervals with high message rates followed by time intervals with
low message rates)
• Applications where there are M data sources and N clients

• Change transient communication to
persistent communication

• Save messages to a data structure
• Send an ACK to the client that message is

stored, and ready to be processed, but
not processed yet

Some form of Persistent Synchronous
Communication

Client

Message
Oriented

Middleware

Request

Reply

Server

Request

Reply

• Create an asynchronous communication based on two synchronous communications and an intermediate
entity (Message Oriented Middleware – MOM)

DSRL – Distributed Systems Research Laboratory

Client-Server Indirect Communication
Message Oriented Middleware Architectures

• Point-to-point Messaging (Queue destination)

• Used when an application needs to send a message to another application

• The message is first delivered to the queue, and then delivered to a consumer
registered for the queue

• Any number of producers can send messages to the queue

• Each message is guaranteed to be delivered and consumed by one consumer

• If no consumers are registered to consume the messages, the queue holds them
until a consumer registers to consume them.

Source: https://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

DSRL – Distributed Systems Research Laboratory

Client-Server Indirect Communication
Message Oriented Middleware Architectures

• Publish – Subscribe Messaging (Topic destination)

• Used when multiple applications need to receive the same message

• Messages are delivered to the topic destination, and then to all active consumers
who have subscribed to the topic

• Any number of producers can send messages to a topic destination, and each
message can be delivered to any number of subscribers

Source: https://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

DSRL – Distributed Systems Research Laboratory

Client-Server Indirect Communication

Technologies:
• Rabbit MQ
• JAVA Messaging Service (JMS)
• Microsoft Messaging Queue (MSMQ)
• Apache Kafka
• Etc.

DSRL – Distributed Systems Research Laboratory

Server-Client Indirect Communication

How to handle cases when client needs to be updated without “knowing it”?

Client Server

Send data

New Data available for client

Examples:
• Chat – someone writes a message to Client A. Client A is now aware a message was written to it, so it does not know

when to make a request to get new messages.
• News feed – someone publishes news in a topic of interest. The client would like to receive the news but does not

kwon when to ask for it.
• Sensor monitoring system – Client visualizes data from a sensor network and is alerted when motion is detected.

Client does not know when to ask for data?

DSRL – Distributed Systems Research Laboratory

Server-Client Indirect Communication

How to handle cases when client needs to be updated without “knowing it”?

Client Server

Send data

New Data available for client

Possible Solutions:
• Make repeated HTTP requests based on a timer

Request

HTTP was not built to deliver this kind of interactivity
• HTTP is half-duplex => traffic flows in only one direction at a

time

Emulating full duplex HTTP
AJAX (Asynchronous JavaScript + XML)

Content can change without loading the entire page
User-perceived low latency

Problem:
• Too many requests – based on frequency of timer
• Some requests do not get new data
• Network congestion
• Server bottleneck

Polling
Nearly real-time
Used in Ajax applications to simulate real-time communication
Browser sends HTTP requests at regular time intervals and immediately
receives a response

DSRL – Distributed Systems Research Laboratory

Server-Client Indirect Communication

How to handle cases when client needs to be updated without “knowing it”?

Client Server

Send data
New Data available
for client

Possible Solutions:

Request

• Long Polling
• usually rely on HTTP => HTTP overhead => less efficient communication between the server and the web

browser, especially for real-time applications
• Browser sends a request to the server which keeps it open for a set period
• Speed limited by response-request-response
• Request/response headers add overhead on the wire Source: https://www.pubnub.com/blog/http-long-polling/

Blocked until data
available

RequestNew Request
even if no data
needed

Blocked until data
available

REPLY-REQUEST
instead of
REQUEST-REPLY

DSRL – Distributed Systems Research Laboratory

Server-Client Indirect Communication

How to handle cases when client needs to be updated without “knowing it”?

Client Server

Send data

• Accept connections
• Save client connected
• Receive data
• Send data to client (push data)

Possible Solutions:
• WebSocket:

• bi-directional communication (data is sent from the client to the server and vice versa)
• full-duplex communication (i.e. client and server send data simultaneously) over a single TCP connection
• real-time communication
• client/server communication
• The server can send data to the client at any time
• Reduces the overhead of each message
• Uses only one connection per client

• Opposed to HTTP which creates one request per message

Request

Keeps connection open

(Source https://docs.spring.io/spring/docs/5.0.0.M5/spring-framework-reference/html/websocket.html)

• Open connection to server
• Send data
• Receive data (without request)

DSRL – Distributed Systems Research Laboratory

Conclusion

• Based on asynchronous communication type identified, initiator of data
generation, processing type and volume of data exchanged, choose between:

• Asynchronous communication using Message Oriented Middleware:
• Allows delay tolerant data processing

• Data generation and processing rates are different in time

• Queue vs Topic

• Data push techniques:
• Allows real time data processing

• WebSocket – mostly used nowadays

• Based on JavaScript frameworks

DSRL – Distributed Systems Research Laboratory

Option 1: RabbitMQ – Deployment using Docker on Heroku

• Create a Dockerfile starting from a RabbitMQ image
(https://hub.docker.com/_/rabbitmq)

• Setup RabbitMQ to start on $PORT (loaded dynamically from $PORT Environmental Variable)

• The PORT variable is set by the Heroku runtime and incoming requests are to this port

• RabbitMQ would start by default on port 5672 => you need to change the default configuration

• Configure the port by specifying your custom configurations through :
• rabbitmq.conf - used to set things like TCP port, SSL certificates

• rabbitmq-env.conf - used to set environment variables that are read upon startup docs

• Deploy your image from your local computer (use > heroku container:push…)

Or

• Setup a Gitlab repository with the Dockerfile and a gitlab-ci.yml file

https://hub.docker.com/_/rabbitmq
https://www.rabbitmq.com/configure.html#customise-environment

DSRL – Distributed Systems Research Laboratory

Option 2: RabbitMQ – Use CloudAMQP Free service

• Use RabbitmMQ as a service from https://www.cloudamqp.com/

• Free Plan:

https://www.cloudamqp.com/

