

FACULTY OF AUTOMATION AND COMPUTER SCIENCE

COMPUTER SCIENCE DEPARTMENT

1 | P a g e

DISTRIBUTED SYSTEMS

Assignment 2

Load Balancing

Reverse Proxy

Prof. Tudor Cioara S.l. Marcel Antal Conf. Cristina Pop

As. Liana Toderean As. Alexandru Rancea As. Dan Mitrea

As. Gabriel Antonesi

2024-2025

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

2 | P a g e

1. Introduction

As web applications grow in complexity, they face challenges in ensuring reliability,

performance, and security. By distributing workloads across multiple servers and routing traffic

efficiently, distributed systems can boost scalability, reduce response times, and improve fault

tolerance. Load balancers and reverse proxies are essential components that help manage traffic

distribution and application performance.

2. What is a reverse proxy?

A reverse proxy is a server that sits between client devices and backend servers, intercepting

requests from clients and directing them to the appropriate server. Here’s how a reverse proxy may

improve your setup:

• Caching: reverse proxies can store copies of frequently accessed content, reducing load on

backend servers and speeding up response times for clients;

• SSL Termination: they handle encryption and decryption of SSL/TLS traffic, offloading

this computational work from backend servers;

• Enhanced Security: by hiding the IP addresses of backend servers, a reverse proxy adds

a layer of security, protecting your infrastructure from direct exposure to clients.

Figure 1 Reverse Proxy Flow

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

3 | P a g e

3. What is the role of a load balancer?
A load balancer distributes network traffic across multiple servers to avoid overloading any

single server, ensuring that applications remain responsive even under high traffic conditions.

Benefits of load balancing include:

• Improved Performance: traffic is routed to servers with available resources, optimizing

the response times;

• High Availability: by distributing traffic across multiple servers, load balancers ensure

redundancy, meaning that if one server fails, traffic is rerouted to other servers, minimizing

downtime;

• Scalability: load balancers allow you to add or remove servers easily, adapting to traffic

changes and to network constraints.

Load Balancing Algorithms

Load balancers use different algorithms to distribute requests:

• Round Robin: requests are routed to each server in turn (most common approach);

• Least Connections: traffic is directed to the server with the fewest active connections;

• Least Response Time: traffic will be directed to the fastest and least busy server;

• IP Hashing: requests are distributed based on client IP, ensuring that a specific client

consistently reaches the same server;

 Figure 2 Traffic within a system with and without load balancing

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

4 | P a g e

4. Introducing Traefik

Traefik is an open-source Application Proxy that helps users in publishing their services. It

receives requests on behalf of the system and identifies which components are responsible for

handling them, and routes them securely. It is suitable for adding both reverse proxying and load

balancing into your infrastructure.

Figure 3 Traefik overview

4.1 How it works

The Traefik Architecture is designed to handle incoming requests efficiently, directing them

through a series of well-defined components: Entry Points, Routers, and Services. Each

component plays a distinct role in ensuring that requests reach the correct backend services

smoothly.

When a request first enters Traefik, it encounters the Entry Points. These are the points where

Traefik listens for incoming traffic, typically configured by specifying ports or protocols (for

example, HTTP on port 80 or HTTPS on port 443). By defining one or more entry points, you

control where Traefik listens, allowing it to filter incoming traffic based on port and/or protocol.

After passing through the entry points, the request moves to the Routers. Routers are

responsible for connecting incoming requests to the appropriate backend services. They examine

key aspects of the request, such as the host (e.g., the domain name), path (like /login or /api), and

other details like headers to determine the destination. Routers use rules to decide how to route

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

5 | P a g e

each request; for instance, a rule might state, “if the request is for api.myapp.com, direct it to the

API service.” Additionally, Routers can apply middlewares—optional components that modify

the request or response. Common middlewares might add authentication, enforce rate limiting, or

adjust headers.

Once a router has matched the request to a destination, the request reaches the Services layer.

Services define where Traefik should send the request after routing, specifying backend servers,

load balancers, or other destinations. They determine the specific server or service instance that

will handle the request. When multiple instances of a service are available, Traefik can distribute

the load across these instances using load balancing, ensuring efficient handling of high traffic and

reducing the likelihood of any single instance being overloaded.

Finally, the request arrives at its destination—whether this is a backend server, service, or

application—completing its journey through the Traefik architecture. The request flow moves

systematically from Entry Points, through Routers, to Services, with optional middleware

adjustments along the way. This architectural design allows Traefik to manage traffic efficiently,

improve security, and balance load across multiple service instances, providing a reliable and

scalable setup for your applications.

5. Traefik and Docker - example

Integrating Traefik with Docker enables dynamic and efficient management of your

containerized services. Traefik automatically discovers Docker containers and configures routing,

simplifying the deployment and scaling of applications. In this setup, the reverse-proxy service

utilizes the traefik:v3.2 image to function as the central routing component for proxying and load

balancing.

Figure 4 Traefik architecture

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

6 | P a g e

Figure 5 Traefik configuration example

Command Arguments:

Argument Description

--api.insecure=true Activates the Traefik dashboard and API without

authentication. Caution: This setting is insecure and

should only be used in development environments lik your

assignments! Do not use it in production!

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

7 | P a g e

--providers.docker Enables the Docker provider, allowing Traefik to

monitor Docker events and update its configuration

dynamically

--accesslog=true Enables access logging, facilitating monitoring and

debugging

--accesslog.filepath=/var/log/traefik/access.log Specifies the file path for storing access logs

--log.level=DEBUG Sets the logging level to DEBUG, providing detailed

logs for troubleshooting

--entrypoints.web.address=:80 Defines an entry point named 'web' that listens on port

80 for incoming HTTP traffic

Ports:

• 80:80: maps port 80 of the host to port 80 of the container, allowing external HTTP traffic to

reach Traefik;

• 8080:8080: maps port 8080 of the host to port 8080 of the container, providing access to the

Traefik dashboard – useful to monitor if Traefik correctly discovers all docker containers used

in your configuration.

Figure 6 Screenshot taken from the Traefik Dashboard, running on the exposed port 8080

Volumes:

• /var/run/docker.sock:/var/run/docker.sock: mounting the Docker socket into the Traefik

container allows Traefik to interact directly with the Docker daemon. This setup enables

Traefik to automatically detect and configure routes for your Docker containers as they start

and stop, simplifying the management of your services;

• traefik_logs:/var/log/traefik: mounts a volume for storing Traefik's logs, ensuring persistence

and accessibility.

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

8 | P a g e

Networks:

• shared-network: connects the Traefik container to the shared-network, facilitating

communication with other services on the same network – OPTIONAL, but better for

network isolation and control over network settings.

5.1. Using Traefik to route between multiple services

The following Docker Compose service configuration defines a containerized Spring Boot

application called app1. As you already know from the lab, each part of this setup plays a specific

role, from building the application image, all the way to setting up Traefik as a reverse proxy. We

will be focusing on the extra configurations, that were not covered for the previous assignment,

namely deploy and labels sections. The deploy section in a Docker Compose file specifies

deployment configurations for services. The replicas setting within deploy defines the number of

instances (or replicas) of the service that Docker should run. For example, setting replicas: 4 in the

deploy section means that Docker will launch four identical containers for this service, allowing

for load balancing and higher availability. Traefik can distribute incoming requests across these

replicas, which is especially useful for handling high traffic or ensuring redundancy in case a

replica fails. The labels section is used to enable and configure Traefik specifically for that service.

Let's take a closer look.

Figure 7 Docker Compose service configuration and Traefik labels for routing

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

9 | P a g e

Step Label Format Example
Enable Traefik

for Service

traefik.enable=true traefik.enable=true

Define a Router

with a Rule

traefik.http.routers.<router_name>.rule=Host(<domain_name>) traefik.http.routers.app1.rule=Host(a

pp1.localhost)

Specify

Service’s Port

traefik.http.services.<service_name>.loadbalancer.server.port=<i

nternal_port>

traefik.http.services.app1.loadbalance

r.server.port=8081

Here’s how each label works:

1. Enable Traefik for the Service:

adding traefik.enable=true to the service’s labels tells Traefik to manage routing for this

particular service. Without this label, Traefik will ignore the service and not route any

traffic to it.

2. Define a Router with a Rule:

the label traefik.http.routers.<router_name>.rule=Host(<domain_name>) sets up a

routing rule. Here:

o <router_name> is a unique identifier for the router, which you can choose (e.g.,

app1);

o <domain_name> specifies the hostname that should be routed to this service (e.g.,

app1.localhost).

This rule ensures that any request with the specified hostname (like app1.localhost) will

be directed to the service associated with this router.

3. Specify the Service’s Internal Port:

The label traefik.http.services.<service_name>.loadbalancer.server.port=<internal_port>

tells Traefik the port on which the service listens inside the container. Here:

o <service_name> should match the name of the service (e.g., app1);

o <internal_port> is the port that Traefik routes traffic to within the container (e.g.,

8081).

These labels allow Traefik to dynamically route requests based on the hostname and

forward them to the correct service on the specified internal port, providing an efficient setup for

handling traffic across services in Docker.

When configuring Traefik for multiple services, you can reuse the same label structure

by simply adjusting the service-specific names. The setup for each service will look almost

identical, but you’ll change the names of routers, services, and internal ports as needed. This

approach keeps your configuration consistent and easy to maintain, while allowing Traefik to

handle each service separately.

Alternative for running multiple instances of the same container

If you don’t want to specify replicas in the Compose file, you can scale services

dynamically using the --scale flag when you run the docker-compose up command. This is a quick

way to adjust the number of replicas from the command line without modifying the Compose file

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

10 | P a g e

directly. This approach is useful when testing different replica counts on the fly or when you need

flexibility in scaling services based on real-time needs.

Example command: docker-compose up --scale app1=4

Bonus

In Traefik, you can use „middlewares” to manipulate request paths before they reach your

services. One useful middleware is StripPrefix, which removes specified prefixes from incoming

requests. This can be helpful in cases where your services don’t expect certain path structures.

Here’s how to set it.

To remove unwanted path prefixes from incoming requests, we start by defining the

middleware that performs this action. The label traefik.http.middlewares.<service_name>-strip-

prefix.stripprefix.prefixes=/api creates a middleware named <service_name>-strip-prefix that

removes the /api prefix from incoming requests. For example, you could use

traefik.http.middlewares.app1-strip-prefix.stripprefix.prefixes=/api to define this middleware for

a service called app1.

Once the middleware is defined, we attach it to the service’s router using the label

traefik.http.routers.<service_name>.middlewares=<service_name>-strip-prefix. By linking this

middleware to the router, we ensure that all incoming requests with the /api prefix are

automatically adjusted before they reach the service. This setup is useful when the service itself

doesn’t expect or recognize the /api prefix. For instance, if your application expects requests to

start at /users (e.g., /users/123) but you want external requests to go to /api/users/123, this

middleware will strip out /api, so the service only sees /users/123.

This approach is particularly helpful when you have multiple services organized under a

common API structure (like /api) but each service requires specific paths without that prefix. By

using StripPrefix in this way, Traefik ensures that incoming requests are routed in a format

compatible with each service’s internal path structure, keeping configurations consistent and

requests clean.

Request routing between Docker containers

The connection between two Docker containers (e.g. from user microservice to device

microservice) through Traefik can be established by defining a PathPrafix rule in the router

configuration of the target container.

However, it is important to note that while Traefik matches requests based on the specified

path prefix, it does not automatically strip the prefix from the forwarded request. This means the

backend service will receive the full path (including the prefix), which might not match the

expected routing in the backend application.

To address this, a middleware needs to be added to explicitly strip the prefix from the

request path before forwarding it to the target container.

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

11 | P a g e

Here is an example of how to configure this:

In this example, it is shown how to configure a PathPrefix rule and attach a middleware to

strip the prefix from the incoming request before it is forwarded to the target container. This

ensures that the backend service receives the request path in the expected format.

Requests from another Docker container can be made to the Traefik container (named

reverse-proxy) using the specified PathPrefix. Traefik will then process these requests according

to the defined routing rules and forward them to the appropriate target container after applying the

middleware.

E.g.: A request to http://reverse-proxy/app1/... from another Docker container within the

same network, will be routed by Traefik to the app1 container. Traefik will strip the /app1 path

prefix (using the configured middleware).

app1:

 build:

 context: ./producer

 dockerfile: Dockerfile

 depends_on:

 - db

 deploy:

 replicas: 4

 environment:

 SPRING_DATASOURCE_URL: jdbc:mysql://db:3306/users_db

 SPRING_DATASOURCE_USERNAME: root

 SPRING_DATASOURCE_PASSWORD: root

 networks:

 - shared-network

 labels:

 - "traefik.enable=true"

 - "traefik.http.routers.app1.rule=Host(`app1.localhost`) || PathPrefix(`/app1`)"

 - "traefik.http.middlewares.app1-strip.stripprefix.prefixes=/app1"

 - "traefik.http.routers.app1.middlewares=app1-strip "

 - "traefik.http.services.app1.loadbalancer.server.port=8081"

DISTRIBUTED SYSTEMS Load Balancing

 Reverse Proxy

12 | P a g e

6. System Architecture Blueprint

7. Bibliography
1. https://doc.traefik.io/traefik/ Traefik Official Documentation
2. https://dev.to/karvounis/basic-traefik-configuration-tutorial-593m - Basic Traefik

configuration tutorial
3. https://www.ibm.com/topics/load-balancing - What is load balancing?

4. https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/ - What is a reverse

proxy?

https://doc.traefik.io/traefik/
https://dev.to/karvounis/basic-traefik-configuration-tutorial-593m
https://www.ibm.com/topics/load-balancing
https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/

