
DSRL – Distributed Systems Research Laboratory

Technical University of Cluj-Napoca

2023

 Basic Security in
Distributed Applications

Security Designs for Microservices

DSRL – Distributed Systems Research Laboratory

Contents

• Application Security
• Authentication

• Authorization

• Cryptography
• General concepts

• HTTPS

• Conclusion

• Basic Techniques:
• JWT

• Spring Security + JWT

• Advanced Techniques:
• OAuth 2 Protocol

• Security Design for Microservices

DSRL – Distributed Systems Research Laboratory

Application Security

• Distributed applications can be accessed remotely via network

• Access to resources must be restricted for different users

• Techniques for authenticating (verifying identity) and authorization (verifying if user has rights
to access different resources) are developed

• However, attackers (Hackers) can impersonate real users. Thus, techniques to hide data from
attackers are employed => use of CRYPTOGRAPHY

Distributed
Resource

Distributed applicationAuthentication: Verify identity
Authorization: Check access rights

Login: User, Password, Role (Access Rights)

Hackers can eavesdrop to steal data
and impersonate the real user

User

DSRL – Distributed Systems Research Laboratory

General Cryptography Concepts

• Fundamental component of any security solution

• Only method to ensure that the messages sent of the communication media cannot be
understood by attackers, even if intercepted.

• Provides integrity and confidentiality protection

• Important for mechanisms of
• Identity

• Authenticity and

• Non-repudiation

• Uses cryptographic methods with symmetric and asymmetric keys

• Symmetric algorithms:
• E.g. Advanced Encryption Standard (AES)

• Problem with key-distribution

• Asymmetric algorithms:
• Mainly used for symmetric algorithms key

distribution
• Diffie-Hellman
• RSA
• Elliptic Curve Cryptography

DSRL – Distributed Systems Research Laboratory

Application Security
Authentication

• Using a Login process
• Standard use of a username and password to identify users

• More complex forms can be employed (two-factor authentication, biometrics, etc.)

• User data should be sent to server to validate credentials

• All subsequent requests should carry some form of user authentication data to ensure that the same user is
logged in
• User data is saved in client applications (e.g. cookie, session or local storage)

Distributed
Resource

Distributed application

Authentication: Verify identity
Authorization: Check access rights

1. Login: User, Password, Role (Access Rights)

User

2. Validate access

3. Data request carrying identity information

DSRL – Distributed Systems Research Laboratory

Application Security
Authorization

• Using a set of FILTERS according to access rights (or roles) on the requests
• Standard use of a different application roles to encode the access rights

• User access rights are created during register process

• After each authentication process (login), the user access rights are returned from the database and used at each
subsequent request to allow user access to different resources

• User access rights should be stored only on server side, not to allow users to alter them
• Can be saved in a session at the server side

• Can be retrieved from DB at each request (too time consuming)

Distributed
Resource

Distributed application

Authentication: Verify identity
Authorization: Check access rights

1. Login: User, Password

User

2. Validate access

3. Data request carrying identity information

4. check role according to user identity
5. Filter request according to role
6. Grant or forbid user access to resources

7. Return response to user

DSRL – Distributed Systems Research Laboratory

JWT (Json Web Token)
• Open standard (RFC 7519)
• Defines a compact format for transmitting information between clients and servers as

JSON objects.
• Transmitted information can be verified because it is digitally signed.
• Reduce transmitted information in case of authentication (send JWT token instead of

username and password)

Distributed
Resource

Distributed application
1. Login: User, Password

User

4. Return JWT token

5. Data request carrying JWT token in request header

6. Validate JWT using secret key

2. Validate username password
3. Generate JWT token using a secret key

7. Data response

[Source: https://www.javainuse.com/spring/jwt]

DSRL – Distributed Systems Research Laboratory

Spring Security + JWT

• Spring Security is a JAVA
framework that provides
authentication and
authorization

• Develop a Spring application
with a REST API

• Generate a JWT token at the
first request

[Image Source: https://dzone.com/articles/spring-boot-security-json-web-tokenjwt-hello-world]

DSRL – Distributed Systems Research Laboratory

Spring Security + JWT

• Use the token in all subsequent
requests

• Furthermore, it is possible to use
filters to grant access on endpoints
according to user roles

• Reference Tutorial:
https://dzone.com/articles/spring-
boot-security-json-web-tokenjwt-
hello-world

[Image Source: https://dzone.com/articles/spring-boot-security-json-web-tokenjwt-hello-world]

DSRL – Distributed Systems Research Laboratory

HTTPS Description

• HTTPS: Hypertext Transfer Protocol Secure (HTTPS)

• Secure communication over Transport Layer Security (TLS), or formerly
Secure Sockets Layer (SSL)

• Port 443

• Relies on:
– Asymmetric cryptography for key transmission

– Symmetric cryptography for data transmission

– Digital certificates for server authenticity

• Encrypt HTTP messages except destination base URL (IP: port)

DSRL – Distributed Systems Research Laboratory

HTTPS Connection Details

Server

Client Key exchange

Communication Stage

Connect to server

Generate
private/public
keys

Send public key

Generate secret key
Encrypt secret key Send secret key

Generate session
key

Encrypt HTTP request
using secret key

Encrypt HTTP request
using secret key

Decrypt HTTP
request using
secret key

Decrypt HTTP request
using secret key

DSRL – Distributed Systems Research Laboratory

HTTPS Connection Details

Server

Client Key exchange

Communication Stage

Connect to server

Generate
private/public
keys

Send public key

Generate secret key
Encrypt secret key Send secret key

Generate session
key

Encrypt HTTP request
using secret key

Encrypt HTTP request using
secret key

Decrypt HTTP
request using
secret key

Decrypt HTTP request
using secret key

How can be assured the authenticity of the server?

DSRL – Distributed Systems Research Laboratory

HTTPS Connection Details

Server

Client Key exchange

Communication Stage

Connect to server Generate
private/public
keysSend public key and certificate

Generate secret key
Encrypt secret key Send secret key

Generate session
key

Encrypt HTTP request
using secret key

Encrypt HTTP request using
secret key

Decrypt HTTP
request using
secret key

Decrypt HTTP request
using secret key

Certificate
Authority

Ask to Validate Certificate Validate
Certificate

DSRL – Distributed Systems Research Laboratory

HTTPS Practical Guide

• Configure Web Servers to use HTTPS instead of HTTP.
– Requests will be handled on other port

– Tomcat will use 8443 instead of 8080

• Generate a set of certificates to assure authenticity of server:
– Generate own pair of public-private keys and add exception to browser

– Buy a certificate from a CA

DSRL – Distributed Systems Research Laboratory

OAuth2 Protocol
• OAuth 2.0 is a security standard where one application gets permission to access data in

another application.
1. User requests access to Spotify (client

application)

2. Client application makes request to
Authorization Server (i.e. Facebook)

3. Authorization Server requests user
credentials

4. Authorization Server sends Access Token and
Refresh Token to client application.

5. Client application uses Access Token to access
resources on Resource Server

6. Resource Server verifies the access token by
sending it to Authorization Server

7. Client Application access resources on
Resource Server using Access Token (that was
already granted access)

8. When Access Token expires, it uses the
Refresh to ask the Authorization Server for a
new Access Token

Sources: https://hackernoon.com/oauth-20-for-dummies

DSRL – Distributed Systems Research Laboratory

Security Design For Microservices
• JWT-based access with shared private key between resource servers

Distributed
Resource

Login service
1. Login: User, Password

User

4. Return JWT token

5.1. Data request carrying JWT token in request header

6. Validate JWT using shared secret key

2. Validate username password
3. Generate JWT token using a secret key

Distributed
Resource

Device service

Distributed
Resource

Monitoring service

Share
secret key

7. Data response

DSRL – Distributed Systems Research Laboratory

Security Design For Microservices
• Single-point access gateway for authentication/authorization and

routing
– Use one service for authentication/authorization

– The service will redirect calls to other microservices in a LAN

– The service will authorize calls to various endpoints from each microservice

– The LAN will hide access to other microservices from WAN (securing them)

Login Service

Application Entry Point:
- login service for authentication
- reverse proxy for backend services
(contains authorization)

1. Login: User, Password

User

4. Return JWT token

5. Data request carrying JWT token in request header

6. Validate JWT using secret key

2. Validate username password
3. Generate JWT token using a secret key

10. Data response

User Service

Device Service

Monitoring
Service

Local Area Network

7. Request to destination
microservice based on
 URL and reverse proxy

8. Data Response

9. Data response

DSRL – Distributed Systems Research Laboratory

Security Design For Microservices
• Implement own OAuth 2 server

– Implement OAuth2 Server in Spring
– E.g. https://github.com/spring-projects/spring-security-

samples/tree/main/servlet/spring-boot/java/oauth2/login

Client
Application

Login Service
(Authorization Server)

User Service
(Resource Server)

Device Service
(Resource Server)

Monitoring Service
(Resource Server)

3. Request using Access Token

4. Validate Access Token

5. Response after accessing resources

4. Validate Access Token

4. Validate Access Token

https://github.com/spring-projects/spring-security-samples/tree/main/servlet/spring-boot/java/oauth2/login
https://github.com/spring-projects/spring-security-samples/tree/main/servlet/spring-boot/java/oauth2/login

DSRL – Distributed Systems Research Laboratory

Conclusion

• Security is a Non-Functional requirement of
Distributed Applications

• Security consists of Authorization, Authentication,
Data Integrity, Non-Repudiation and Data Protection

• Cryptography is a powerful tool in assuring
Application Security

• Authorization and Authentication can be assured
through user identification (username and
password) and roles.

• JWT is an Open Standard for the Authorization and
Authentication process

• Data Integrity, Non-Repudiation and Data Protection
can be obtained only using cryptography.

• HTTPS is a secure HTTP protocol that uses
asymmetric cryptography for key exchange and
symmetric cryptography for data exchange

	Slide 1: Basic Security in Distributed Applications Security Designs for Microservices
	Slide 2: Contents
	Slide 3: Application Security
	Slide 4: General Cryptography Concepts
	Slide 5: Application Security
	Slide 6: Application Security
	Slide 7: JWT (Json Web Token)
	Slide 8: Spring Security + JWT
	Slide 9: Spring Security + JWT
	Slide 10: HTTPS Description
	Slide 11: HTTPS Connection Details
	Slide 12: HTTPS Connection Details
	Slide 13: HTTPS Connection Details
	Slide 14: HTTPS Practical Guide
	Slide 15: OAuth2 Protocol
	Slide 16: Security Design For Microservices
	Slide 17: Security Design For Microservices
	Slide 18: Security Design For Microservices
	Slide 19: Conclusion

